

Unpacking ASProtect v of 2.xx (cutting sections, the
restoration of the [skramblernogo] code,

[dekompiljatsija] VM, the restoration of import, [inlajn]
of [patch])

Victim: FontExpert of 2005 Version: 7.0 Release 1.
To take is possible here: the http://www.proximasoftware.com/
If on the site there will be new version, and by you will be
necessary precisely this – you will report to me, and I will lay
out somewhere for the running off.

Author:PE_Kill
e the mail:PE_Kill@mail.ru

Introduction
As occasion for writing of this article served the complete

absence of information, about the restoration of the
[skramblernogo] code and [dekompiljatsii] “virtual machine”. I
began to write article, simultaneously becoming acquainted with
work and equipment Of aSProtect'a. Therefore after writing of
article I much rethought, saw many errors and learned considerably
more than he wrote in this article. This article more greatly
resembles not the management on the removal Of aSProtect'[a], but
the diary of the cracker, in which in the order it is said, as I
broke concrete program.

Here there are no some, very necessary scripts. For example
script for the passage to OEP. This is done intended, since most
likely this is last article with more or less complex
[iskhodnikami]. To whom will be wanted to work unknown how much at
[dekompiljatorom], to and then lay out him to [pablik], so that in
following [bilde] all this would cover? It is necessary to be
investigated with all itself. I having been, for example, steamed,
twentieth time hands to reach OEP, became to study OllyScript and
to search for into ASProtect'e of regularity. Already in a day
other day I wrote OEP Of finder. So that there is nothing complex
of – dare, investigate!

Note: Most likely the addresses of the chosen sections of
memory coincide will not be! Even in me on the middle of article
was changed the address of the [skramblernogo] code. In this
program there is no table of initialization; therefore in this
article nothing it it is discussed. The table of initialization
exists only in the programs, written to Delphi, although it can
be, also, to Borland Of c++. Information on the restoration of the
table of initialization you can take from the article Of sergSh
“unpacking Of aSProtect 2.13 based on the example Of
icolover.exe”, which lies at the division of rar- article on the
site www.cracklab.ru.

Necessary tools:
 OllyDbg 1.10, with [plaginami], for the concealment of the
presence of diagnostic routine.

 OllyScript by Of sHaG v 0.92 or ODbgScript by Of epsylon3 v
1.41 (better it)
 PETools by Of nEOx of v1.5 RC6 of – is compulsory of this
version!
 WinHex or another hexadecimal editor.
 ResFixer v of 1.0 beta 1 by seeQ of – or another utility for
[rebilda] of the resources
 PEiD of v0.93 and v0.94
 ImpREC 1.6 for restoring the import.
Necessary knowledge:
 Knowledge PE Of format of – is compulsory

Knowledge of the assembler of – superficially
Necessary habits:
 It is necessary to have at least initial habits of
unpacking.

Determination of version and the search for original

entrance point.

And so, here, which tells us PEiD of v0.94

I will say immediately according to the experience that version
0.94 equally defines AsProtect 2.0x, AsProtect of 2.1xxx and
AsProtect 2.2 as AsProtect 2.1x SKE.
But here version 0.93 of these 3[kh] of versions can recognize
only AsProtect 2.0x, about the remaining versions he speaks
Nothing of found *.
Let us look, which to us will say PEiD of v0.93

It means AsProtect 2.0x it drops off.
How to determine, with which of the remained two versions we do
deal? This we will explain only further, and we thus far load
program into OllyDbg and we see the standard beginning Of
asProtect'a of any version (except the early).

Now let us open the options of diagnostic routine and will remove
all [galochki] in the supplementary sheet Of exceptions.

“Why?” – you will ask. Protector with the work generates
exceptions, for the difficulty of its fixing. I do not know, can,
when it only thought, this it interfere withd coma that fixing its
code, but today such Of antiTracing can frighten perhaps that
entirely green novice. Well that zh, who harms us, that us will
help. Usually the number of exceptions from the moment of the load
of program into the diagnostic routine and before complete
unpacking one and also (although there are the exceptions (in the
sense there is the unequal number of exceptions)). After last
exception occurs the even more insignificant correction of data,
and then leap to the original entrance point, i.e., in the place,
from which the program began to be performed to the protection by
protector. This point is our purpose. Costing on the address of
original entrance point into the program we let us be able to
throw out the unpacked dump of program from the memory to the
disk.

And so we start our program (F9). They stopped in this place:

Below in the line of state we see:

OllyDbg reports that occurred the exception with a attempt at the
writing into the memory with address 00000000 and proposes to
harvest Shift+F7/F8/F9 in order to transmit this exception into

the program for the subsequent working. This is those exceptions
themselves, which are necessary to us. Now it is possible to more
precisely determine the version of protector. In the version Of
asProtect 2.2, as far as to me known, generally there are no
exceptions. Apparently the author introduced large changes in
charger. Therefore AsProtect 2.2 drops off. In order to reach the
original entrance point necessary to press Shift+F9 to that
moment, when program is neglected. If after sequential exception
the window appears:

, then it is necessary to place what or of [plagin] for OllyDbg
the hiding diagnostic routine from the detection (IsDebugPresent,
Hide Of debugger).

We memorize the number of occurred exceptions and it is reloaded
program (Ctrl+F2). We start [pogrammu] (F9), we are interrupted on
the exception and harvest Shift+F9 as many times, as they counted
exceptions past time minus one (this and understandably, otherwise
program again it will be neglected). In me this number is equal to
35. They must stop where that here:

But do not entangle! These places: 2. Us are necessary the second.

But how to us to now find original entrance point? Simplest way of
– this to place the point of stop in the section of the code.
Since after last exception in the section of the code of more than
anything it is written, the following turning to it will be when
the code, located in this section it will begin be carried out.
But it will be carried out it will begin certainly from our
original entrance point (further OEP) into the program.

It is discovered the map of memory (Alt+M) and we see:

We see that the program is loaded with address 00400000. The first
region with address 00400000 with size of 1000 (PE of header) is
PE by the title of our victim (read the description PE Of
format'a). The following region with address 00401000 with size of
15C000 is the section of the code, it is here to it to us and it

is necessary to place [brejkpoint] on the access to the memory. We
place [brejpoint] (further [brjak]):

We harvest Shift+F9 and… we are interrupted clearly not on OEP.
Well not terribly, simply AsProtect stole in the program the first
several bytes of the code and carried out their itself, but in
their place it entered zero. It means above that address, where we
now are located they must be zero or the command
ADD BYTE PTR DS:[EAX], AL of – so [dizassembliruet] zero
disassembler. We do look above and… that after features?

Above is located instruction RET, of zero it does not smell. I
will say on the secret that this not OEP, but altogether only one
of the numerous functions of program. How I did learn, that this
not OEP? This will arrive with the experience. Try to look as it
appears BY OEP in the programs, written in the different languages
of programming and you will understand everything. Then another
question asserts itself: “If this not OEP, this first turning to
the section of the code and this is one of the numerous functions
of program, then from where was caused this function?”. This
question to answer is not complicated. Once this is function, then
with its call the address of recovery will be brought in into the
stack. We look, what do we have in the stack:

We see that the address of the recovery of 00E22236. Council.
Never mind, which is located in the third column of the window of
stack. Here – nothing, but is - complete absurdity. Now let us
pass to this address, we harvest Ctrl+G, enter 00E22236,
Enter.[Okazyvaemsja] here:

We see that to 00E2224F is caused BY API the function Of
getVersionExA. We recall, that this function one of the first is
caused in the programs, written to Visual C. if this program is
written on, then we are located almost on OEP. The result is that
program begins they will be carried out not in the section of the
code, but in this region to memory and [brjak] to the access to
the memory on the last exception must be placed precisely on this
region, and not in the section of the code. Let us consider this.
In order to determine the beginning of this region we press the
key For home and it is exerted on the address of 00E20000, this is
a beginning of region. Let us memorize this number and it is
reloaded program. We reach the last exception, it is discovered
the map of memory and we place [brjak] on the access to the memory
to that region itself:

We harvest Shift+F9 and it is exerted here:

If I do not make mistakes, then by command PUSH 60 does begin the
program, compiled by what that (I do not remember) however, with
version s. I that it is obtained? But is obtained this is what –
Of asProtect now it does not steal several bytes with OEP (to the

first call of call), but takes away completely all beginning of
program into itself and memories are carried out in region chosen
under this code. Well this is not terrible! What does prevent us
from [sdampit] program and separately this region memory, and then
tightening this region of in the form new section to the dump? Let
us look only below and we see:

We see that the function of 00E90000 it is caused to of 00E203CA
and 00E203F1. Moreover in the first case into the stack is placed
00E208B0 (similarly to the address of recovery), but the secondly
into the stack generally nothing it is placed. Really this is is
one additional trick Of asProtect'a? Let us verify. We harvest by
the right button of mouse and we select Search of for->All of
commands. In the appeared window we write
call of 00E90000 we harvest Enter.
The imposing list was obtained:

In all in me it was located 112 calls of these functions. It
means, to [sdampit] this region will not come out /. “but why!” –
you say: “It is possible to [sdampit] and this function!”. But
here this will not come out, since this is that “virtual machine
itself” (further VM), about which everything they heard, but that
it from itself represents and as to fight they do not know with
it. To [sdampit] it is possible, but [gimorno] is not-pretty.
[Gimorno], because it is already disposed to the current addresses

yes and the size in it impressing, and is not-pretty because not-
pretty… And one additional problem consists in the fact that
checking registration also occurs in VM.

[Dekompiljatsija] of virtual machine.

However, what such “virtual machine”? AsProtect with the
packing of program moves away from it some instructions and they
will replace with their call VM. In this context of understanding
– this is VM the region memory, in which are carried out the
specific actions. The result of these actions will be the same as
with the fulfillment of original instructions. But, in contrast to
the original instructions, in VM all is carried out more tangled.
Maltsters it tried as it is possible to more strongly hide the
mechanism of work VM. As a result with the dump of program remain
many calls VM, which now is not. Therefore dump is obtained
nonworking. To fight with this is possible by several methods.
Best - to restore all stolen instructions, to thus remove
dependence on VM. For restoring the instructions there are two
methods:
1) to completely study work VM, to understand the operating
principles with its tables, to understand the size of utilized
data and to as a result write analog, but not for fulfilling the
stolen instructions, but for their restoration.
2) to find such places in the nucleus VM, where, after stopping at
[brjake], it is possible to accurately determine the type of the
emulated instruction and directly its operands. For example, after
stopping in similar you [mete], on what that to signs to
understand, that this is the instruction of cmp, to neglect
program further, to again stop and to understand that the register
of eax is compared with which the, and after stopping where the
further - to understand with which it is compared.

The first method is completely long, is labor-consuming and in
principle no one not necessary. The second more promising and the
spent time depends only on the power of observation and on the
level of meditation. Certainly, I selected the second method ☺. as
a result I it wrote script for restoring the stolen instructions.

I will not describe in detail as I it searched for each control
point for the script, since, although this and more rapid method,
not on so many in order for two passages to understand the logic
of that, to what Of [soldovnikov] it dedicated so much time.
Script is applied to this article (RebuildVM.osc) and I tried as
it is possible to in more detail describe each line of the code.
To whom is not interesting the theory of – that it can simply
neglect script and it on the automaton will restore the stolen
instructions, well and all rest I please to pass with me into the
peace of the captivating step-by-step laying out of the code ☺.

Let us approach! Let us place indicator on the first call VM and
will press Ctrl+ * or by the right button of [myshi]->New of
origin of here, thus, after establishing location counter (eip) to

the necessary address. Now we harvest F7 (Step of into) and fall
into the function of 00E90000. We see the heap of rubbish and
instructions of jmp. How I did understand, where the rubbish?
Beginning of the function:

00E90000 JMP SHORT of 00E90005
00E90003 INT 20
00E90005 PUSH EDI
00E90006 PUSHFD
00E90007 JMP SHORT of 00E9000C
00E9000A INT 20
00E9000C LEA EDI, DWORD PTR SS:[EBP+ESI+405AC8]
00E90013 SUB EDI, ESI
00E90015 SUB ESP, 20
00E90018 LEA EDI, DWORD PTR DS:[ECX+EDX * 2+5F]

We see to 00E90000 that is carried out the leap through the
command INT 20 to 00E90005. Then into the stack is placed register
EDI. Remains register EFL (state of all flags). Again the leap
through the command INT 20 to 00E9000[S]. in EDI is placed dword
with the address EBP+ESI+405AC8. From EDI is read ESI. ESP
decreases by 20h. In EDI is placed dword with the address ECX+EDX *
2+5F. Note that for the recording of dword'[a] onto the register
EDI to 00E90018 is used not one value of the previous
calculations. Result simply is rerecorded! I.e. all this can be
replaced with the following code:

PUSH EDI
PUSHFD
SUB ESP, 20
LEA EDI, DWORD PTR DS:[ECX+EDX * 2+5F]

Even then, if you look further, then you will see, that EDI again
is rerecorded, so that the command LEA EDI, DWORD PTR DS:[ECX+EDX *
2+5F] is not also necessary. Now, if we want, then it is possible
to completely clean rubbish from this function and to ascertain
that the useful code in it entirely a little, in essence of – this
calculation of the address of the passage into the following
region of memory. Passage into this region is accomplished with
the aid of the command CALL EXX, where instead of EXX there can be
any register.

Interesting us passage:

Upon transfer into the following region of memory we fall into the
function, which achieves identification of the stolen instruction,
and it is more concrete specific, function sorts out the coded
values in its table of hash and compares with hash of the current
function, if they coincided, then the primary initialization of
function is produced and it passes directly for emulation. This
function also not large – of the order of 0ACh (172) of bytes.

CALL EDX to 00C5856F is occupied by sample and decoding of hash
from the table of hash. Immediately the comparison of obtained
hash with hash of the current function is produced after it. If
they are not equal, then is checked not last this hash in the
table. If the latter, then reveals “Error: 111”. But here function
to 00C5858B will be carried out only if hash it coincided. Here
this function is a emulator of the stolen instructions! Let us
place [brjak] on this function and will neglect program. They
interrupted. We harvest F7 and fall directly into the emulator.
This function most tangled, since many different actions here are
produced. Only we see below such instructions

CALL EDX obtains the type of the stolen instruction:
AL= 0 (it is stolen call)
AL= 1 (it is stolen jmp)
AL= 2 (it is stolen jcc (one of 16 [dzhampov]))
AL= e (they are stolen cmp+jcc)
Yes, ASProtect can emulate immediately several instructions.
Respectively now we see that here VM branches out also depending on
what type emulation, will be produced passage to the appropriate
branch of emulation.
Let us place [brjak] immediately after call edx.[Zapuskaem]
program. They interrupted, we see that in AL 0, means it is
emulated call (you remember into the stack it was placed the

address of recovery?). Means to us it is necessary first
conditional [dzhamp]. We harvest two times F8 and we here.

[Dotrassirujte] to the instruction Of jmp to 00C583F1 and will
carry out it. Let us prove to be here.

Jmp to 00C584C7 carries out the leap into another region of
memory, but there it occurs nothing interesting, only is
normalized stack, the address of recovery is placed into the stack
and leap to the function of program is carried out. I.e. if in the
program to the protection it was as follows:
Call of xxxxxxxx
The ASProtect substitutes this by the call VM, where, if we
strongly strongly simplify it is carried out:
Push the address of the recovery
Jmp of xxxxxxxx
Where instead of xxxxxxxx there can be both the address in the
section of the code and the address in the chosen region of
memory.
In my script I substitute call VM by precisely such instructions.
The address, which the instruction of push places into the stack
necessary to change by the address, with which will be placed the
stolen code after dump. With emulation of call they were
dismantled. That I can say apropos emulation of jmp, and nothing.
This one and the same, with one reservation alone, that, if it is
caused BY VM for emulation of call, then before call VM goes push
of xxxxxxxx. But if jmp, then nothing it is placed into the stack.

Let us return to the function, which determines the type of the
stolen instruction, for this sufficient several times to harvest
key “-” on the digital keyboard. Let us move indicator for
following conditional [dzhamp].

And let us press Enter. Let us prove to be here:

Call of edx to 00C58407 determines the type of the stifling of
jcc. After its fulfillment of eax contains the type of the
stifling of jcc.

Number of
[dzhampa]

[Dzhamp] [Opkod]

0 Jo 70
1 Jno 71
2 Jb 72
e Jnb 73
4 Je 74
shch Jnz 75
' Jpe 7A
" Jpo 7B
8 Js 78
9 Jns 79
A Jbe 76
B Ja 77
C Jl 7C
D Jge 7D
E Jle 7E
F Jg 7F

As you see entire jcc they go practically on the growth, with
exception of two.
But call to 00C58413 performs complex logical operations, leading
the values of conditional flags to one – 0 or 1, and is placed it
in ZF. I.e., converts any (one of 16) of [dzhampov] in jz.
Depending on the state of flag ZF is carried out one of two
passages. Both they lead to the functions of the formation of the
address of passage, the first - if condition is satisfied, the
second - if no. But passage is further accomplished there, where
during emulation of call.

I.e. if in the program to the protection it was as follows:

Jcc of xxxxxxxx

That ASPR $$RTASPR - automated system of planned calculations
substitutes this by the call VM, where, if we simplify, it is
carried out:

Call Of getStolenJmp
Call Of convertFlags
Jz xxxxxxxx
Jmp of xxxxxxxx

Well here, with emulation of jcc also they were dismantled.
Remained most complex – emulation of cmp+jcc.

Again let us return to the function, which determines the type of
the stolen instruction and let us place indicator on following
conditional [dzhamp].

Let us press Enter. Let us prove to be here:

You will memorize this address, since for us it is necessary to
here still return. Call to 00C5844E emulates the instruction of
cmp. We place on it indicator and harvest Enter. Now we proved to
be directly in this function. We see below this code only:

Call of edx to 00C58260 determines the first operand for the
comparison. If into eax after the fulfillment of function the
number from 0 to ", then the first operand of – one of eight
registers:

Number
of the
register

Register

0 Eax
1 Ecx
2 Edx
e Ebx
4 Esp
shch Ebp
' Esi
" Edi

Otherwise this is constant and its value is calculated only below.
We see below the same code:

Entire the same, only for the second operand. Even we see below
this:

Call of edx to 00C582DC determines the type of that emulated of
cmp. In eax, after the fulfillment of this [kella] and command and
eax, 7F, is located the number, which designates the type of
emulation:

Number of Mask of the comparison

the
comparison
0 Cmp of dword of ptr [????????]????????
1 Cmp????????, dword of ptr [????????]
2 Cmp of byte of ptr [????????]??
e Cmp??, byte of ptr [????????]
4 Cmp????????????????

Where instead of questions can stand either register or constant.
Jmp to 00C582E6 accomplishes a passage to the instructions, which
initialize one or another type emulations.
For example, during emulation of cmp of dword of ptr [of eax], ebx
it is necessary to first obtain dword to eax, to and then compare
it from ebx, that also make these instructions.

We look still below

Call to 00C58344 answers directly for the comparison of operands.
Before its fulfillment into eax lies the value of the first
operand, into edx of – of the second. All, with emulation of cmp
were dismantled, now let us look how is emulated jcc after it. You
do remember, I did request to memorize address, before the
entrance into this function? Let us return to it.

Jmp to 00C58456 is altogether only debris instruction for the
trapping of disassembler. We place on it indicator, harvest Enter
even we see that the instructions recognized correctly.

However, and that we do see? Yes nothing else but previous
emulation of jcc, only with another address. I was shocked! Why
two times to write one and the same? I think that you will be
dismantled themselves.

Well here we dismantled cursor VM. As you see nothing complex. To
there remained only write script, that I already made. But! Script
is not a little stable. In it there are several [bagov], which I
will not correct. This script was my first script for OllyScript,
I studied his possibilities and commands. Therefore he is not very
optimized and it is terribly realized.
Known [bagi]:

Incorrect algorithm of the restoration of that emulated of
call. Necessary to correct push only if with obtaining of the type
of the stolen instruction it will be accurately known that this
call. But script restores push always at the given moment, if it
costs before call VM, and this not correctly and there were
already errors.

Script itself searches for the empty place for the at the end
current region of memory under the restored instructions and it is
not always correct. Sometimes simply does not be sufficient vacant
place and the part of instructions is not restored. I treated this
by the fact that with the load of program intercepted
VirtualAllocExA and looked in the stack the size of the inquired
memory, if it coincided with the size of necessary to me region
memory, then increased it by 1000h.

For the fastening of knowledge, you [perezapustite] program and
place [brjaki] on the obtained control points. It will be useful
to with its own eyes see work VM.

Now it is possible to restore all stolen instructions and to
[sdampit] this region memory and to hitch it as the new section to
the dump. But for the fact that to restore the stolen
instructions, to script it is necessary to indicate the base
address of section, which will be added to the dump. But for this
by first [sdampim] our program. And here here again problem.
ASProtect, besides the theft of instructions, is occupied even and
by the theft of the calls API of functions, substituting call API,
by the call of its function, which is located in the chosen region
memory. Therefore, if we to [sdampim] program, these calls will
indicate in anywhere. It means it is necessary to first restore
all which is connected with the import.

Restoration of the import

In this version Of aSProtect'[a] the import is protected
considerably stronger. Protection appears just as in the previous
versions, and it here works differently.

For those, who are not familiar with the old protection. Pass into
the section of the code. For this we harvest Ctrl+G, we write with
00401000 and harvest Enter. Now we harvest by the right button of
[myshi]-> Of search of for->All of intermodular of calls (to find
all calls of functions).
We see:

It is below:

Call of 00E50000 is adapter on API function. But this is very sly
adapter. It not as small as in the old versions (entirely old) yes

even works according to another principle. Earlier than ASProtect
instead of the address API in IAT substituted the address of its
adapter and for API of function was caused adapter on API
function. Now ASProtect takes function from IAT, searches for all
its calls and substitutes them by the calls of its universal
function, and then is moved away the address API of function from
IAT. Thus! Now in order to restore this function, it is necessary
to learn, which for API function causes this adapter and to
restore the address of this API in IAT, to and then restore its
call. It is here with this exactly of problem in this version.
Theory is one and the same. It is necessary to learn beginning and
end of the table of import. Then as that to learn that for API
causes the function of – adapter. To find this function in IAT (if
there is), if no, then write it into the end IAT. To change the
call of adapter to the call API of function. In the old versions
Of aSProtect'[a] (from 1.33 to 2.00) the adapter worked as
follows:

Generally the this was not the adapter, but the function, which,
it formed. Those, who are familiar with this concept, as Delay Of
import of – know, this is it and there is. With turning of program
to this function, ASProtect calculated the address of function
necessary TO API and formed new adapter to it, then money-changers
the address of the call of its function to the address of adapter.
In more detail read the appropriate articles. I will say only that
for the formation of the adapter Of aSProtect used API the
function Of virtualAlloc. After placing on it [brjak] and, after
neglecting program, we jingled to VirtualAlloc and in the stack,
on the specific displacement was visible the address of stolen
API.

Now everything otherwise. Now ASProtect uses immediately two forms
of adapters. They appear equally – the call of one and the same
function in the chosen memory. But, in one case Of aSProtect
continues to as before cause VirtualAlloc, to form adapter and to
[propatchivat] the place of call, and in other of – it connects
its new VM for emulation of the call API of functions. For this he
does not use VirualAlloc and not [propatchivat] the call of
adapter. But how to us to now learn the address of [ukradenoj] API
of function? Nothing complex. It suffices to a little
[potrassirovat] and we will see in the stack address API. But
there is a universal method, with the installation of [brjaka] on
API the function, which uses ASProtect for determining the address
API. I thought that ASProtect cannot but use not one API of
function for the work its VM. Let us place [brjak] on the access
to the memory in the section of the code in the library of
kernel32.dll.

Then let us install location counter (eip) to the call of adapter.

All. Now we start program. And we here:

This API the function Of loadLibraryA, with the aid of it
ASProtect [podgruzhaet] or, if it is already loaded, is obtained
the base DLL, in which is located stolen API the function. We look
into the window of the registers:

To [uuu]… This is already very interesting. Give [dotrassiruem] to
the instruction RETN 4, that would load necessary DLL, and then
let us look, where indicator to the name of function will move.
And so, we remove [brjak] from the section of the code:

we harvest Ctrl+F9 and we at the end function. We look into the
window of the registers:

It is excellent! In eax is located the base of the necessary of
dll, while into edi indicator to the name of the stolen function.
Who does not know – this two parameters, the necessary for API
functions Of getProcAddress, which returns the address API of
function. The experiments can be ended on this, since more than
ASProtect API functions does not cause (only stolen). Yes to us in
the principle of more than anything and it is must. Now it is
possible to write script on the restoration of adapters. But there
are difficulties. To us it is not possible to allow the
fulfillment of the stolen function, otherwise we will lose control
over the program. If we interrupt work VM, then the balance of
stack will be disrupted and during the restoration of the large
number API of functions it simply will fall through and program
will collapse. Therefore before the fulfillment of adapter we will
preserve the register of esp, and after the restoration of adapter
- respectively restore the register of esp. To calculate the
address API of function we will be with the aid of the function Of
getProcAddress. Cause it we will be with the aid of the injection
of the code. Everything else, as in the previous versions Of
aSProtect'[a]. by the way, the it turned out that this method
works also for the previous versions. Therefore we will restore
all adapters by one script. Script, as you surmised, I already
wrote (IAT_Recover.osc) it itself finds the adapters Of
aSProtect'[a] it restores them, but it should indicate beginning
and end IAT.

I fairly often hear, that in many appear the problems with the
determination of beginning and end IAT, and also about the fact
that in IAT much rubbish is, that among it also are encountered
API of function. Give let us try to solve this problem. For this
let us pass into the section of the code and will find any call
API of function.

We see that is caused BY API the function Of getLocaleInfoA, whose
address lies to 0055D284. This address (0055D284) is one of the
addresses IAT. Let us determine the beginning of the section, in
which is located this address. For this in the command line we
write with d of 0055D284 and harvest Enter. We see:

This is IAT. To novice certainly this window not about which will
say, this understanding will arrive with the time (experience).
Now let us make a window of dump active (sufficient to call to it
by mouse) and let us press the key For home. Now we in the
beginning section with the directory of import.

It leaves, that begins it from the address of 0055D000. Let us
memorize and [perezagruzim] program. Thus far ASProtect it did not
begin its work, let us look, which is located in th section e
interesting us.

This is none other than the rubbish, not necessary not To
aSProtect'[u], not to us. Let us place indicator on number 24 to
0055D000 and let us twist the window of dump downward to the end
itself by mouse for [skrol]. Now let us stop up the key For shift
and will call by mouse to quite last [chiso] of this section. Well
here was isolated entire section. Now we harvest by the right
button of mouse we select:

Well here. Now entire section is oppressed by zero, and it means,
there is no rubbish greater:

Now we reach OEP and look, what do we have in this section.

We see that the section was filled up with the addresses of the
imported functions. Let us look end IAT. It is here here easy to
be mistaken. Therefore I always search for the empty place at the
end for section and for itself I consider that this is a end IAT.

We will consider that began IAT of 0055D000, and the end of
0055EB00. If we did not drive in this section by zero, then she
would be entire filled with rubbish (except the addresses API of
functions) and we did not find vacant place.
Apropos adapters. As you know programs written to Delphi they have
adapters on API of the function of the form
jmp of dword of ptr [of xxxxxxxx],
and on SI of – of call of dword of ptr [of xxxxxxxx]. It is
natural that also [opkody] in these instructions are different: in
the first case FF25, in the second of – FF15. Therefore to script
necessary to indicate what form passages we restore. You do
remember the first obtained call API?

It means nevertheless FF15. Therefore when script will ask to use
[obkod] “of call” (FF15) necessary to harvest yes. Well that zh,
let us neglect script and will wait for the end of work. I
recommend the decreasing of the window Of ollyDbg to the minimum,

since with the work of script, [Olli] in the line of state he
writes:

And in this case very slowly it works, and here if window was
minimized, then everything is normal and script very rapidly
works.
We start script and on the first a question answer 0055D000, on
the second of 0055EB00 well and to third yes. Through several
minutes we see that the script finished its work.

200h = 512 functions are restored! Yes, I tried to optimize
script, that he so rapidly worked. Let us look, did add the script
of the address of functions in IAT.

We see that no. Means all addresses it it found in already
existing IAT. If it added function, then respectively would
increase size IAT.

Here now we can [sdampit] program to the disk.

We start PETools and [dampim] program.

To before restore import, give to [otrezhim] in dump excess
sections. Indeed now file is completely unpacked, import let us
soon restore, with VM will be finished – why to us now the section
Of aSProtect'[a]? But it cannot be thus far cut off, since
ASProtect steals even and resources. If we will cut off its
section, then let us be deprived of the part of resources. Give
them let us restore.
I use ResFixer by of seeQ. We start this remarkable utility and we
select our dump. We see that the utility counted all resources of
our dump. Now let us twist window downward. We see:

Everything which is marked by red, ASProtect of [sper] to its
section and we should return this in the place. We select as
Rebuild Of method:

And we harvest Rebuild. We prescribe any, pleasing itself name and
preserve the restored section to the disk.
Now let us open our dump with the aid of PETools and will open
Directory Of editor (we harvest to the button Of directories). We
look RVA of the directory of the resources:

Now let us open dump and the restored section of resources into
WinHex'[e]. in the dump let us pass to the address of 001C3000,
for this we harvest Alt+G, enter 001C3000 and harvest Enter.

It is now discovered supplementary sheet with the directory of
resources, we harvest Ctrl+A (to isolate everything), Ctrl+Shift+C
(to copy as the sequence of bytes) and we pass to the
supplementary sheet with our dump. We place cursor on 00 to
001C3000 and harvest Ctrl+B (to put the sequence of bytes), we
agree with all questions and preserve our dump. Let us look to
[ikonku] of our dump, if it did not disappear, then everything is
normal.

We see that [ikonka] on the spot. Let us again open file into
PETools and will open Section Of editor (we harvest to the button
Of sections) and let us remove both sections after the section of
rsrc.

After this, we should correct some parameters in PE title, for
this let us shut the current window and will open Image Of
optional Of header Of editor (we harvest to the button Of optional
Of header). We harvest to all [voprosiki] in this window:

We shut PETools.

Now we start ImpREC for restoring the import and we select our
process. In the field OEP it is possible to introduce although
that (main thing in the limits of file) I entered 1000, since
present OEP in the file we as yet do not have. In the field RVA we
introduce the address of the table of import minus Of imageBase
(address of load) of our program, i.e., of 0055D000-
00400000=0015D000. In the field Of size we introduce 0055EB00-
0055D000=1b00. We press GetImports, then ShowInvalid.

Let us try to use special [plagin] for the recognition of the old
adapters Of aSProtect'[a]. in me of such [plaginov] much, but
correctly works only one.

We see that the function recognized – this GetProcAddress. We
again harvest ShowInvalid.

Now, if we twist window to the bottom itself, we will see, that
there is not one identified address API of function. Therefore
boldly we harvest:

All unrecognized addresses were removed. This it indicates only
that all [vosstanovlenye] with the aid of the script adapters
already have a address in IAT. But here if one address was added
in IAT, then in the very to the bottom of window we would see
identified API of function.

Now we harvest FixDump and we select our dump. It is finished with
the import.
Is discovered dump with the aid of PETools and is discovered
Section Of editor (we harvest to the button Of sections). We
should add the new section, into which we will place th code e
stolen By aSProtect'[om].

PETools requests to introduce some important parameters: the name
of section, the virtual and real size of section. But so he asks,
we do want to put section from the file, to fill with its zero or
to put the description of section only into the title, but not to
put it in the file. As the name it is possible to introduce
everything, anything. In order to determine the size of section,
let us open into OllyDbg the map of memory and will look the size
of region memory with the stolen code.

It means we introduce into PETools as the virtual and real size of
the section of – 00005000 we select the flag Of fill of with of
0x00 so that the editor would create both the description of
section in PE title and section itself in the file.

We harvest Add and look VA of new section.

VA of this section will be new base for the stolen code.
Specifically, this value must be introduced into the script, which
restores the stolen instructions.

[Perezapuskaem] program we reach OEP. All, it is possible to start
script on the restoration of the stolen instructions. We start
script, await thus far it it [samonastroitsja] and it will inquire
the new base of the code. We after which introduce VA of new

section in the dump plus Of imageBase, i.e., of
00297000+00400000=00697000.

We harvest Enter and await, until script restores instructions.
All, script worked out. We harvest * on the digital keyboard in
order to move for the instantaneous value of eip. But now let us
press the key For end and let us prove to be the at the end chosen
memory. We harvest Pages Up, until zero, are changed into the
code. Beginning from the address of 00E346ED it begins the
imposing list of conditional [dzhampov] and commands of
comparison. This is the restored instructions. Here are some
fragments.

Now it is possible to [sdampit] region memory with the stolen
code. We start PETools, we select our process even we indicate
that we should [sdampit] region memory.

In the appeared window we search for our region and harvest Dump.

Now we repeat all operations, that also with the directory of
resources. Is discovered dump and [sdamplenyj] region into
WinHex'[e]. in the dump we pass to 00297000 (beginning of new
section). We pass to the supplementary sheet with the [sdamplenym]

region Of ctrl+A, Ctrl+Shift+C. We pass to the supplementary sheet
with the dump Of ctrl+B. We preserve dump. It is finished with the
scrambler and VM (I I hope). Is now reparable OEP. OEP will be
equal to address OEP in the chosen memory minus the old base of
the stifling code plus the new base of the stifling code.
OEP = of 00E3030D-00E30000+00297000=0029730D. Is discovered our
dump with the aid of PETools and is discovered Image Of optional
Of header Of editor (we harvest to the button Of optional Of
header). In the field Of entry Of point we change 00001000 by
0029730D and preserve changes. In principle the program is
unpacked. But always there are its “but!”.

Let us open our dump into OllyDbg and will wait for, until the
analysis of the code ends. We see that the now stolen code is
located through another address. It turns out that we did
everything correctly.

We start program F9. Program fell, and OllyDbg in [storoke] of
state it writes:

To [ugu]. Error, with the starting of the code to 00E30662.
Interesting address. Indeed the same the address of the memory,
where there was the stifling code! Similarly program where that
still causes it. By [perezapustim] program let us pass into the
section of the code (Ctrl+G, 00401000, Enter). Let us try to look
the address of 00E30662 as the constant. For this we harvest by
the right button of [myshi]->Search of for->Constant. In the
appeared window we write:

And [zhmjom] OK. Yes! I was rights!

It is now necessary to recount displacement relative to new
section and to change the address of [dzhampa]. New address = of
00E30662-00E30000+00297000 = 00297662. Now it is possible to
change jmp of 00E30662 for jmp 00297662, but you do not hurry. I
will say immediately that such [dzhampov] in this program THERE
ARE VERY many. Therefore I wrote script on the restoration of such
[dzhampov]. He is called JMP_VM_REDIRECT.osc. This script must be
disposed to your program.
Variables:

RegionVM_Start of – the beginning of the chosen region memory, in
which there was the stolen code. In me is equal 00E30000.

RegionVM_End of – respectively the end of this region.
In me is equal 00E30000+00005000 = of 00E35000

RegionMain_Start of – the beginning of new section with the
[sdamlenym] stolen code plus Of imageBase.
I have – of 00297000+00400000=00697000.

We enter values in the script and start it in our dump. We see in
second:

21h = 33 [dzhampa] are adapted to the new displacement. Now we
pass into the section of the code, we place indicator on the very
first command and it is moved by mouse for the sulky the window of
the code into the bottom itself. We press Shift and will call by
mouse on the last command of this window. We see that entire
section of the code was isolated. Let us call by the right button
of mouse and we select:

We shut the appeared window, OllyDbg it asks, we do want to
preserve changes. We harvest yes and OllyDbg proposes to introduce
the name of file. It is possible to preserve into the same dump,
but I always preserve into the new file, so more easily to make a
recoil, in the case of error. Is discovered into OllyDbg the
preserved dump even we await, until the analysis of the code ends.
We start program even we see that it again fell in this place:

This still that after command is such after the call API of
function? For the first time similar I see. Let us roll up for the
moment OllyDbg and will neglect one additional copy Of ollyDbg, in
which let us open the protected program. Let us reach OEP and will
pass to the address of 0048E438 and will install location counter
(eip) to this address (Ctrl+ *). Now let us isolate several bytes
after the call API of function establish [brjak] to the access to
the memory.

Now let us neglect program. They interrupted here:

We see that this where that in the chosen region memory and to us
this does not approach. Again we harvest F9 and we here:

But this already the code being been located almost immediately
after the call API of function, you will memorize its [opkody]
(83FFFF). Open diagnostic routine with the dump. Now let us place
indicator on the address of 0048E43E and will press Ctrl+E.
Hexadecimal editor was opened. We see:

We see that the bytes, on which we dwelled, be present, but here
to them is even what that bytes and here their ASProtect stole and
carried out somewhere earlier, after fulfillment API of function,
also, to the return to the section of the code. Now at their place
the debris bytes, which do not give to disassembler it is normal
to recognize commands. Give we change them for 90 90 ([opkody] of
nop).

We harvest Enter even we see that now the instructions recognized
normally.

But how to us to return the stolen two bytes? Let us look to the
logic of the work of program.
First is caused the function Of getStdHandle, which returns to eax
of [khendl]. Then they go ([jot]) unknowns ([aja]) to us the
command (a) then of edi it is compared with -1. By the way the
number - 1 (0xFFFFFFFF) is the constant (INVALID_HANDLE_VALUE),
which returns with the functions, which work with [khendlami] as
the result of the unsuccessful attempt at the discovery [khenda].
It is interesting that after the call [API] of [khendl] it will be
into eax, and to the validity is checked edi. Not about which he
does not speak? So that finally it will be convinced of my theory

let us look that it lies at the register of eax and edi in our
dump, and in the protected program.

In the dump: In that protected:

As we see in the protected program the register of edi so it
contains the result of the work API of function as eax. I know only
one command, capable of copying value from eax into edi, and which
occupies the size of – of 2 bytes. This is mov of edi, eax. We
enter it instead of two nop'[ov], for this we harvest gap, we
introduce necessary command and we harvest Enter.
We preserve and is discovered the preserved dump. We start program
even we see that it again fell. In the window of the code nothing
it is reflected, but it is here in the line of the state:

It is familiar, not so whether? Error, with a attempt at the
fulfillment of the code to 00E90000, only now this is already
accurate not the address of our restored code. Means ASProtect
where that still it stole the piece of the code and for us one
must find it. For the beginning let us find the call of this
piece. We search for just as past time as the constant in the
section of the code.

And we again find ☺. only now this not [dzhamp]:

The required address is placed in the stack, and then the command
of retn extracts it it from there and accomplishes to it a
passage. Let us look, what do we have here in the protected
program. The same. Therefore in the protected program we place
location counter (eip) on this address and harvest two times F8.
Now we in the chosen region memory, to 00E90000. We see that this
is the entirely small piece of the code and we can decrease it
still more, if we clean from the rubbish and even let us be able
to return it in the place.

But that not to fan even without that large article we will not
this make. Let us look, where it is possible to insert this code.
The first, that occurs of – this the section of the code (indeed
there it and it was earlier). In the diagnostic routine with the
dump in the window of the code let us press the key For end. Now
we at the end the section of the code, see continuous zero. Let us
twist window upward, until we meet the first nontrivial bytes.

It means insert the code we will be to 0055C796.
In the window with the protected program let us isolate the code
and let us copy it into the buffer of exchange.

Let us pass into the diagnostic routine with the dump let us press
Ctrl+E, Shift+Insert, Enter. Now this code will be placed to
0055C796. It is naturally necessary to change reference to this
code. We pass to the address of 004843F8 and instead of 00E90000
let us enter 0055C796:

We again separate entire section of the code and we preserve
changes. Is discovered dump. F9. In the line of the state:

Search for the constant of 00EF0000.

In the protected program we pass to the address of 0044CEEB and it
is passed into the chosen memory. This time the code of completely
solid size, and, after twisting window downward, we see:

Yes / this again VM. To this code it is first necessary to apply
script, on [rebildu] VM, and already then to copy into its dump.
But, as we remember, to script it is necessary to indicate the new
base of the restorable code. [Petomu] first let us be determined,
where it will be placed. Let us arise to the beginning of the code
and let us call two times by mouse at the intersection of the
first column and current line.

Now the addresses of commands show in the form displacement. Let
us twist window, until the code ends.

Leaves that this code it occupies 0x00000766h of bytes. Let us
pass into the diagnostic routine with the dump. Do remember where
we they did put the last stolen code? We pass to the address of
0055C796 and let us twist downward, until zero begin:

Now let us place cursor on 0055C7DC and will call two times by
mouse at the intersection of the first column and the display
line. We see that also here the addresses became displacement.

Let us press the key For end and we at the end the section of the
code. We look at the displacement of the last byte:

[Khekh]. Place is sufficient, still and it remains. It means, this
code we will place to 0055C7DC. In the diagnostic routine with the
protected program we start script for [rebilda] VM, and we write
to a question about the new base of the code:

We harvest OK and await, until script works out. We harvest * and
we again on the beginning of the stifling code, as you already
know script it throws down the restored instructions at the end of

the code. Let us look, they did not exceed the permissible size of
the code.

We see that a total of several instructions were added and the
code still gets in into the section of the code. We separate
entire code and we copy into the buffer of exchange. We pass into
the diagnostic routine with the dump, we separate from 0055C7DC
the bytes of the longof 77Fbytes and we harvest by the right
button of the mouse:

It is now necessary to change [dzhamp] for the stolen code. We
pass to 0044CEEB and we correct 00EF0000 to 0055C7DC

We preserve dump, and it is discovered it in the diagnostic
routine. F9. They fell here:

Line of the state

What after…? Judging by the line of state in this place it occurs
a attempt at reading to 00C33A29. We harvest Ctrl+A and
immediately gap. We see:

It turns out that program compares from [nuljom] something, which
is stale to 00C33A29, when there was ASProtect. And you [zamete],
that if this something is not equal to zero, then program
calculates the length of line, which is been located to 00C33A29.
Nothing it does resemble? Greatly it reminds me of testing the
registration code. Give let us try to substitute the address of
00C33A29 to the address, which it will indicate what or line. Let
us open the map of the memory:

In the appeared window we write:

And we harvest Enter. Was opened the window of dump even it shows
that the address is found.

We see that it is located in the section with the resources to
005B804C. In the command line we write with d of 005B804C and we
see.

From the address of 005B807C go zero. Let us there and enter our
key ☺.A to 005B804C let us correct indicator from 00C33A29 to
005B807C.

Now we separate all this matter and we preserve changes. Is
discovered the preserved dump. F9. They fell. In the line of the
state:

Search for the constant of 00EE0000:

We pass in the protected program to the address of 0044CED2 and it
is passed to 00EE0000:

We see that this entirely [kazjavka]. We insert into the section
of the code and we guide adapter.

We preserve changes. Is discovered the preserved dump. F9. Program
is loaded…, is loaded…, is loaded. It appeared in [taskbare] and
bang… it again fell here:

Again what the [fignja] after the call API of function. Let us try
to use the same measures. Instead of the first two bytes after
call API let us enter 90 90.

Well here, I so knew. Two-byte instruction is again stolen. But
judging from the fact, that after nop'[ov] go inc of ebx, the most
likely this mov of ebx, eax. Let us verify. [Perezapustim] the
protected program. Let us pass to the address of 00464A69 and will
install location counter (eip) to this address. We place [brjak]
on the instruction after the call API of adapter to the access:

We start program. For the first time we are again interrupted not
there. Again F9 and it is, where must.

We look, what do we have into ebx:

As we see – the same as into eax. We correct our dump:

We preserve changes. Is discovered the preserved dump. F9. And… On
the miracle!!! Program was neglected! We go in Help->About Of
fontExpert… and program falls here here:

No-load condition, the same almost 00EC0000. Program would fall as
earlier, but this time to 00EC0000 randomly proved to be the code,
and several instructions even were carried out. We search for
00EC0000 as the constant:

Well here, I directly prophet ☺. pass in the protected program to
the address of 0042AAD2 and it is passed into the chosen memory.
We see that the code not small and is present VM.

Size of the code:

Plus will be added the restored instructions. Now the code we this
matter will not clearly insert into the section. Let us look, how
much vacant place in th section e added by us.

Place will be sufficient, still and it will remain. We start
script for [rebilda] VM:

We harvest Enter and await, until script works out. We harvest *
and we on the beginning of region with the stolen code. We
separate the code, we copy into the buffer of exchange,
troubleshooter with the dump is discovered and we put the code to
0069B906. Now we change [dzhamp] to 0042AAD2 from 00EC0000 to
0069B906.
We preserve changes. Is discovered the preserved dump. F9. Program
was neglected! We go in Help->About Of fontExpert… This time
generally system error was thrown out. Well nothing. Also it is
possible much interesting to extract from the errors of system:

We see that the error occurred to 00F00100, if we are relied on
entire obtained by us experience, then possible to assume that
program turned to 00F00000, and by it transported so, that it it
could reach [azh] the hundredth displacement. Let us verify
theory. We search for 00F00000 as constant. No, unfortunately this
time I was mistaken. Then we enter on – to other. To

[perezagruzim] program let us place [brjak] on last restored
[dzhamp].

We start program. We go in Help->About Of fontExpert… They
interrupted on our [brjake]. We begin to locate and we fall here:

It is strange, why OllyDbg all in no way wants to recognize the
restorable code. We harvest Ctrl+A and immediately gap. All
recognized:

We go in the function on F7. We see the already restored adapter:

We harvest two times F8.

This is the restored previously code. We locate, until we leave
the function. They left here:

[Dotrassiruem] to the instruction of jmp let us carry out it. Burn
here:

[Oppaaa]… But indeed we searched for the constant of 00F00000!
Yes, I and itself was strongly astonished. It leaves, it does not
be worthwhile to separately entrust to the mechanism of search
into OllyDbg. Let us pass to this address in the protected program
and will visit into the chosen region memory. The code of small
and again is present VM.

All, as it is earlier. To be located this code in me will be to
0069BB06, it means:

Script worked out. We copy the code in the buffer of exchange and
put to 0069BB06. We change [dzhamp] to 0044CFB4 from 00F00000 to
0069BB06. We preserve changes. Is discovered the preserved dump.
F9. Program was neglected! We go in Help->About Of fontExpert…

[UraAAAaa]! Program earned. First test of – closing program. I
noted that with this ASProtect'[om] in essence two problems. These
are the window Of about and the correct completion of the work of
program. We shut program. Well, I so thought – program it fell
here:

This is the system library of ntdll. But how to us to find where
does fall? Let us look, into the window of stack, there must be
the address of recovery from the function into the program.

Let us look, that we have to 0053D85D:

What for [fignja] with API by functions is today created? I see
for the first time so that after the call API of function would be
conditional jump back to the call API! This smells a little by
already infinite cycle! I make the assumption that two bytes,

after the call API of function are stolen By aSProtect'[om], and
instead of them is inserted this insidious [dzhamp]. Here here
simple so to surmise, that after command it is stifling it will
not succeed. Let us try to [pomeditirovat]. Let us open diagnostic
routine with the protected program, let us reach OEP and will pass
to the address of 0053D857, let us install to it location counter
(eip) and let us place [brjak] on several bytes after call API to
the access to the memory. We harvest F9. For the first time not
there, let us pass, but they landed by the here second in the
section of the code.

Thus, now let us open diagnostic routine with our dump and also
will pass to the address of 0053D857. Let us carry out the call
API of function (F8). But now let us compare registers in the
protected program and in our dump.

Protected
program Our dump

The function Of regDeleteKeyA returns result to the register of
eax, and in the protected program the values of eax and esi are
equal. But the in the manner that stolen command has already been
carried out the, it can be assumed that stolen command it is mov
of esi, eax. We substitute in the dump conditional [dzhamp] by mov
of esi, eax, we preserve changes and is discovered the preserved
dump. We start program and attempt to shut. Program fell here:

We see that the program attempts to fulfill the function, whose
address is located into edx. But this address indicates generally
beyond the limits of memory. Let us look, which occurs in this
place in the protected program.

It cannot be! The number into edx is also the very, but is shifted
by two discharges to the right! I searched for here this error
very for long. And it was already it solved, that this is
mysticism and maltsters were accepted to itself to the service of
sorcerer. But I solidly understood that never he is worthwhile to
despair. How I did localize this [bag]? If you [potrassiruete] a
little program, then you will understand because of what Of [ares]
it is shifted by several discharges. In reality it is not shifted.
The address falls as follows in the register of edx:

Ecx is equal 003C84F7 most likely precisely this indicator to what
that by means it decreases by one, indicating no longer the
beginning of address. I decided to search for the place, where to

003C84F8 will be brought in th address e necessary for the work of
program. In the command line we write with d of 003C84F8, harvest
Enter and we see th address e interesting us. Let us place on it
hardware of [brjak] to the record, with the size of dword (4
bytes). To place is necessary precisely hardware of [brjak], since
after reloading of program it will still act.

[Perezapuskaem] program we harvest F9. They stopped here:

We look into the window of the dump:

No, this is what that another address. Again F9, they stopped
here:

We look into the window of the dump:

Yes, this is our address. We look into the window of the
registers:

We see that into esi lies the normal unspoiled indicator. Let us
remove hardware of [brjak] from the indicator so that it would not
interfere.

But now we will locate the code on F8 and follow the register of
esi. We see this place:

This that still such after the call Of getModuleHandleA? Here,
that tells me my scant knowledge of [asma]: STC advances flag [S]F
in one, then DEC ESI decreases the indicator by th address by one e
interesting us!!! But are further generally no one not necessary

operations. Is similar this the again stolen instructions. As we
earlier substitute two bytes after the call API of function by
9090. To [khe]! But indeed the following instructions did not
recognize! It leaves, that ASProtect of [sper] of here 4 bytes.
Now let us look to the logic of the work of program. The function
Of getModuleHandleA calculates [khendel] of necessary module,
unknown 4 bytes further go, into the stack is placed the indicator
to the name of function, then into the stack is placed [khendel]
obtained from GetModuleHandleA. However, that they could make
these 4 bytes, indeed in principle they here were not necessary!
Give [zabjom] by their nop'[ami] and the case is closed ☺.

We preserve changes and is discovered the preserved dump. We start
program and attempt to shut.

All! We completely unpacked program! But there is one [bag]. I
revealed him after [inlajn] of [patcha]. About it I will describe
in chapter about [inlajn] [patche].

As you understood, in this program I did not in vain give so much
attention to the stolen code after the calls API of functions.
However, what this? But this nothing else but second VM Of
aSProtect'[a]. I call its VM API. You do not relate to it
disdainfully, since it emulates many commands. It can emulate even
call of function after call API!
You do remember the place, where we did replace 4 bytes with
nop'[ami]? It is so here there stolen:
Cmp of eax, edi
je 00507EFF
It is strong? In this VM is much more powerful the mechanism of
checking the integrity of the code. I began to write script on its
restoration, but thus far it far to [reliza]. Most frequently
ASProtect do not use this VM with the protection; therefore you
can never not meet with it. So in the program can be encountered
checkings to [raspakovannost] with the aid of the special macros.
Therefore I consider that ASProtect it is necessary to [patchit],
but not to unpack. So it is much safer. I never made [inlajn] of
[patch] (in me it was another technology, but not [loader]), but
in this version I it decided nevertheless to try.

We write [inlajn] of [patch].
After studying, a article Of alex'[a] about [inlajn] of [patch] Of
aSProtect 2.0, I decided to make a little differently. Theory is
the same: ASProtect has multilayer structure, i.e., with the
starting it it unpacks its body in parts into chosen for this
regions memory, which hampers its [propatchivanie]. In order to
[propatchit] program, it is necessary to follow ASProtect'[om]
into these regions of memory before the complete unpacking of
program, to and then [propatchit] and program. But complexity

consists also in the fact that the passages into the following
region of memory are encoded and are deciphered dynamically, in
proportion to the fulfillment of the code.
Let us begin from the fact that we will not search for place for
the arrangement of our [patcha]. Alex wrote that ASProtect cleans
the code On the Border of sections, moreover several times. Let us
consider this and will place the code between the end PE of title
and the beginning of the first section. Let us attempt to trace,
where occurs the first passage Of aSProtect'[a] into the chosen
memory. We place [brjak] on VirtualAlloc of [zhmjom] F9, we are
interrupted and we pass to the address of recovery.

Let us twist window we a little downward and see:

Push 0 is the passage into the chosen region of memory. Thus far
there 0, but if we a little [potrassirovat], then it is possible
to find the place, where the address of passage is written instead
of zero. Here is it:

It is here necessary to enter [dzhamp] to our [patch]. But in the
manner that this [dzhamp] will rub over the original code, then in
[patche] it is necessary to first carry out the rubbed over code,
to and then already [patchit] other addresses. It is reloaded
program and we pass to address 00694583 and it is seen:

However, where be divided the instructions, which we did see here
past time? But these are they and there is, only encoded are
deciphered by gradually several decoders.
Now there are two versions:
To enter so as Alex. To write [dekriptor], which will decipher
this code and if it deciphers correctly, then write [kriptor] and
encode by them our code, and then replace with them original. For
the application of this method it is necessary to find all
decoders of this code, to clean of the rubbish and to try to write
its decoder.

To find the code, which deciphers this place, to [perezagruzit]
program. To pass to the address of decoder and if there rubbish,
then find the decoder of this decoder, otherwise enter passage to
our [patch]. And so until we find very first decoder.
I selected the second version. We place [brjak] on address
00694583 to the record and start program.

We are interrupted in this place:

We harvest F8 and we look that with address 00694583:

As is evident the code is not yet decoded therefore again we
harvest F9. And again we are interrupted on the same address.
Again we harvest F8 and we look that with address 00694583:

Well, then still not [raskriptovalis] instructions to the end,
again we harvest F9. We are interrupted here:

F8 and we look that with the address interesting. Not it is
[raskriptovan]? Again F9, F8. And so until instructions on address

00694583 are restored. After the fulfillment of [instuktsii] of
mov in this place:

We see that th instructions on address 00694583 e interesting us
are completely [raskriptovany]:

It leaves, that decoder with address 0069436E latter and after it
it is possible to [patchit] the code with address 00694583. By
[perezapustim] program let us pass to the address of the last
decoder:

We see that the instructions of decoder are also [poshifrovany]
and are deciphered by another decoder. On the whole we repeat all
previous actions, until decoder deciphers. Then we pass to the
address of the decoder, which deciphers this decoder even we look,
that there. If bytes are there [poshifrovany], we again repeat all
actions until we reach the decoder, which not is [pokriptovan] in
the packed program. In me this chain of the decoders (in this
sequence they they decipher each other) came out:
69415A - > 69420E - > 6942D 3-> 69436E - > 694583.

It is now necessary to study the first decoder and to find in it
such place, with passage of which the following decoder will be
already [raskriptovan]. This is how the first decoder appears:

A little [potrassirovav] it it is possible to understand, that
this is cycle, and that after working out it will pass to
00694187. It means with this address necessary to place jmp on our
[patch]. Since this jmp will rub over the command of sub of ecx,
2c0BD000 i.e. will have to carry out in our [patche], then to
[propatchit] the following decoder and to pass to address 0069418D
for continuing the normal operation of program. I decided not to
[patchit] this code statically (i.e. immediately in the packed

file), but to [propatchit] only with the starting of program. Will
look as begins the work Of aSProtect:

With address 00401000 it will bring in into the stack address
00694001. Through this address is located the body of
[raspakovshchika]. If we will replace this address by the address
of our [patcha], then ASProtect with the starting immediately will
pass to our [patch]! Now let us calculate the address of our
[patcha]. As I already spoke write him will be between the end PE
of title and beginning of the first section. Let us open the map
of memory even we see that PE the title begins with 00400000, and
the beginning of the first section with 00401000:

In the command line we drive into d 00400000 and we see:

This PE the title of in the form hexadecimal dump. In OllyDbg it
is possible to look PE title in the more convenient idea. For this
let us point out to diagnostic routine that this PE title.

Well here, everything was converted into the special structures:

As you certainly know that the last structures PE of title are the
descriptions of sections. We search for the descriptions of the
sections (we twist window downward):

We see that after the address of 0040030[S] the description of
sections conclude and begin zero. I decided to write [patch] from
address 00400350, suddenly he will be required to write any data
(name of user for example ☺). Let us approach. The beginning Of
aSProtect'[a] let us change thus:

Now let us pass to address 00400350. Here we should [propatchit]
the first decoder. Let us write for this
MOV BYTE PTR DS:[694187], 0E9.
This command will prescribe with the address 00694187 [opkod] of
the instruction of jmp. It is further necessary to enter after
[dzhampa] the address, to which ASProtect will pass after the
decoding of the second decoder. Thus far, that we do not have
function, whose address must be entered; therefore let us enter
for the moment any value MOV DWORD PTR DS:[694188], 40404040 after
this it is necessary to pass to that address, where ASProtect
would pass, if we did not change its beginning. We recall what
address it was after the command of push we at first and write
WITH JMP 00694001. It is now necessary to write the function, to
which will pass ASProtect after the decoding of the second
decoder. You do remember that the command of sub of ecx, 2c0BD000
will be rubbed over by [dzhampom]? Therefore let us carry out
first it, and then let us return to the decoder. All this let us
write after JMP 00694001:

Now we know the address of the following function of our [patcha]
(00400366) and we can enter him instead of 40404040 with address
00400357 but not all so simply. It is there necessary to enter
displacement relative to address 00694187. You will look as it
appears jmp 0069418D to 0040036[S]:
E9 1C3E2900. E9 – this [opkod] of [dzhampa], and 1C3E2900 (in the
machine idea) = of 00293E1C (in the human) = 0069418D-0040036C-
shch. I.e. this nothing else but displacement. In order not to
suffer and not to calculate these displacement let us pass to
address 694187, let us enter there jmp 00400366

and let us look as [Olli] it assembled the command:

Well it is here and there is necessary displacement. Let us enter
it instead of 40404040 (to enter necessary in “human” idea! FFD6C1
DA why thus? [Izuchi] the basics of assembler). Well here we
already have a beginning of [patcha]:

After the second decoder will be completely decoded ASProtect it
will fall into the function with address 00400366, where the
rubbed over command will be carried out and control will pass
again to the decoder (well this only thus far we we will not find
the place, where it is possible to [propatchit] the second
decoder.). We place [brjak] on0040036Cand start program. They
interrupted, it means the second decoder it is deciphered. Let us
look how it appears:

[Potrassirovav], we understand, that this again cycle and after
finalizing control will pass to address 00694228, it means instead
of [dzhampa] with address0040036Cnecessary to write commands,
[propatchivajushchie] instructions on address 00694228. But after
them to carry out the instruction of mov si, cx, to [propatchit]
the third decoder and to return the secondly. To more shortly
repeat all that the fact that they made with the previous decoder.
In me this code came out:

Further we repeat everything. We place [brjak] on 00400385 F9 they
interrupted. The third decoder is deciphered. We look, that there:

Entire also the very upon transfer to 006942FA the fourth decoder
will be completely decoded. I think and here you will manage
themselves:

We repeat. We place [brjak] on 004003A0 and start program. The
fourth decoder is deciphered. We look that there:

But here here increasingly more complex. Cycle after finalizing
will pass to the address of 006943A3 but as it is seen the there
conditional jump, which it did not be desirable [ba] to rub over,
since it it is sufficiently complicated to carry out in [patche]
(in the plan of the size of [patcha]). Well it is good. Then it is
possible to rub over the following command (although known will
not be carried out the conditional jump or not). But here here
that exactly and problem. The fact is that this last decoder will
be decoded not to the end and deciphers not only the code, which
to us is necessary, but also itself. All which is located below
address of 006943A3 encoded it will decipher only during the work
of this decoder. Then we make thus. Let us replace this passage to
our, and in the function of our [patcha], to which will pass
ASProtect after the interpretation of th code e interesting us we
let us restore this conditional [dzhamp] let us return to it.

We place [brjak] on 004003C7 and start program. Everything! The
interesting us code with address 00694581 is completely
[raskriptovan], the thanks to you industrious decoders,
[propatchivat] it we will be thus:

To

Afterward

Why thus? First of all you will look to [opkod] of the command
mov of edx, 004003E7.

You do see? BA of – of [opkod] of mov of edx, and further goes
address without any displacement (in “machine” idea). Then we
cause function with the address, which is located into edx. This
method is good even and fact that with the fulfillment of the
instruction of call in the stack there will be the address of the
recovery, to which we can pass, after carrying out, the
instruction of ret. Why then we earlier did not use this method?
But you will look, how many bytes it occupies. Thus far we have
each byte on the calculation. The register of edx I used because
further it it is rerecorded By aSProtect'[om]. We finish writing
[patch]:

You will memorize, that to before return to the body Of
aSProtect'[a] in the register of eax is located the address of
that isolated to [oboasti] memory, where will pass ASProtect and
this key place, after which ASProtect will work only in the chosen
memory. You will memorize this number! [Potrassiruem], until we
see here this code.

We see that after the call Of virtualFree Of aSPr again somewhere
it passes and (here [khitrjuga]!) instructions after the address
of 00C610FB are encoded and are deciphered not long before the
fulfillment. It means necessarily to cause our [patch] in such
place, where these instructions are already deciphered. To me they
were pleased to instruction, that they are carried out before the
instruction of call.
But as to us them to [propatchit]? Indeed this region to memory is
allotted dynamically. You do remember, I did request to memorize
value from the register of eax? With the aid of this address we
will be able to [propatchit] the interesting us instructions. Let
us calculate the displacement of data of instructions relative to
address from eax. 00C610F of 3-00C61000=F3. Let us write our
[patch].

We place [brjak] on 00400411 and start program. We are interrupted
and look at the deciphered instructions.

Passage is accomplished to the address, which is located into eax,
and here into eax this value falls from ebp+442C51. I can
certainly not rights, but I am not confident, that the number of
442C51 is constant, and is not generated each time (or each) anew.
Therefore in order not to risk, let us replace the instruction of
retn by the passage into our [patch], but in [patche] let us
restore everything in the place (since we will rub over
instructions after the instruction of retn) and let us carry out
the instruction of retn in its [patche]. We finish writing
[patch].

We place [brjak] on 00400431 and will neglect program. They
interrupted, we harvest F8 and fall into the program.

Now we twist window downward in search of the instruction of retn
and at the sufficiently large removal we see:

, in addition I am not confident, that this code will be always
located on one and the same displacement relative to that address,
on which we left [patcha]. Therefore I decided to search for this
section on the signature and to place passage to [patch]. And,
attention! Beginning from this address necessary to restore all
rubbed over by us commands, since beginning from this address (can
and earlier, we indeed already was restored the code) ASProtect
begins to observe its integrity and will not make it possible so
simple to rummage in its code. We finish writing [patch].

Well here, almost everything. Program is practically completely
unpacked. BUT! If now it are neglected, then it will fall down
with the cry about the fact that the virus is discovered. Now for
us one must find testing the integrity of file and somehow mix
ASProtect'[u] us to reveal. I decided to separately not
[zamorachivatsja] and made just as Alex. We press Ctrl+G, we write
MapViewOfFile, harvest Enter and we on this function. To place
[brjak] on it is impossible in what place, since ASProtect
completely [dizassembliruet] entire function and it searches for
interceptions. It is possible to place [brjak] on the memory with
this address, but, in addition this [brjak] will frequently
operate because of constant checkings. But iron [brjaki] Of
aSProtect in me constantly were discarded.

But it is possible to enter differently. We see that the function
Of mapViewOfFile is altogether only adapter to the function Of
mapViewOfFileEx. Here on it let us place [brjak]. We harvest F9.
We are interrupted and look into the window of stack.

We see that the address of recovery exactly falls into the body Of
aSProtect'[a]. it is passed to it.

We see that into the register of ebx sends the indicator to the
file. Theory is such, that it is necessary to emulate the function
Of mapViewOfFile. To place interception on the command of mov of
ebx, eax then to cause the function Of virtualAlloc for the
isolation of memory under the file, then to copy the file, which
loaded into the memory Of aSProtect (it is it's a pity, that it

only for reading) into the isolated by us memory and to there
already lead file to that state, in which it was to
[propatchivanija], and then restore the rubbed over instruction of
mov of ebx, eax and that the fact that they rubbed over after it,
then to substitute the address our of the original file to the
address, cleaned. The place of the call Of mapViewOfFile we will
also search for on the signature. We finish writing [patch].

Now after ASProtect will cause the function Of mapViewOfFile
control immediately it will fall on address 0040048D, where we
should cause the function Of vitualAlloc. But here indeed the
misfortune Of aSProtect [bolshe] does not include this function in
its IAT, which fills charger Windows. Now it obtains it
dynamically. However, and that to us to now return back and to
search for where ASProtect does cause this function and to
memorize somewhere this address? But where we can it write down? I
think more simply to itself to add this [fuktsiju] in IAT Of
aSProtect'a. And let its Windows gives to us. Let us look with the
aid of PE Of tools, where the directory of import begins.

In principle it is possible to add function, also, with the aid of
PE Of tools on the automaton. But me does not please itself as it
this makes; therefore it is better by knobs. Let us calculate
delta the displacement (read [manualy] on the import). For the
beginning let us determine in what section it is located the
directory of import.

We see that this .data, because VA of the directory of import is
located exactly after VA of this section. It means Delta=00294000-
000D of 2c00= of 1C1400. Well here now we can calculate RVA of the
directory of import. RVA= of 00294A 50-1C1400=D3650. Let us open

file into Hex editor and will pass to obtained RVA. We see massif
IID.

Let us look the name of first imported DLL. [Adres]=00294A of 10-
1C1400=D3610. We look, what do we have with this address.

It is excellent! That which is necessary. Now let us look, where
is located the massif of indicators to the names of functions.
[Adres]=002949FC-1C1400=D35FC.

As we see they are imported only three functions. As you know this
massif it must conclude with 00000000, and, it concludes with
00000000 00000000. As it is successful! Instead of next-to-last
00000000 we can enter address for the line “Of virtualAlloc” and
charger it automatically changes it to the real address of
function. But there are no lines “Of virtualAlloc” in the file!
But we will enter our its scarcely higher [patcha]. Let us make
this in the same Of hex editor.

We enter instead of next-to-last 00000000 - > 0000033E (00000340-
2)

All, now we know that we can cause VirtualAlloc to
D3608+1C1400+00400000=694A08 at any time ☺. let us write our
[patch]. Let us preserve registers and let us isolate memory with
size our file:

Let us copy into the chosen memory the file, loaded By
aSProtect'[om] and will substitute indicator to our:

Let us clean [patcha] from PE title:

Let us restore the table of import and the beginning Of
aSProtect'[a]:

Well let us restore the intercepted instructions and let us return
to the body Of aSProtect'[a].

Now, if we neglect program, then it will be neglected, and it will
completely normally work. Now let us find the place, where
ASProtect enters in the program indicator to the key.

We start program, we are interrupted here.

We harvest F8 and look, that we have to 005B804C.

As we see this not that. Now ASProtect carried there the address,
which was to the packing and where the further it it changes.
Therefore again we harvest F9 and are interrupted here.

But here this is already very interesting! Here ASProtect writes
value from eax concretely with th address e interesting us. We
harvest two times F8 and look, where they left:

I decided to intercept the function of call of eax and to write
down with th address e interesting us indicator to th line e
necessary to us, and after this to return control to the code,
after call of eax. We will also search for this place on the
signature. As I not tried, but so also I could not compose the
unique signature of the long of 8 bytes. But that that it came out
it is encountered in the file of 2 times and to us is necessary it
is 2nd 4. let us write [patch].

Well, then we intercepted the function Of aSProtect'[a], which
corresponds for the registration and now we must it emulate. For
this let us enter to 005B804C indicator to the key. But indeed we
do not have key! But we and it will enter scarcely higher our
[patcha] (above the line “Of virtualAlloc”). We will use Hex by
editor.

And let us write [patch].

Now, if we neglect program, then let us see, that NAG disappeared
and program was neglected as [zareganaja]. Let us open window
“about the program…” :

As we see – all good. But now let us try to transfer time forward
and by [perezapustim] program.

[Mda]… We will fight. Let us determine, where occurs checking to
the time expiration of [triala].
Let us place [brjak] on MessageBoxA. But! To place is necessary
also as to MapViewOfFile. For the beginning let us place [brjak]
on0040053Fin our [patche]. Let us neglect program. They
interrupted. We harvest Ctrl+G, we write MessageBoxA, harvest
Enter. Now we in this function.

As we see this function it is also adapter to the function Of
messageBoxExA. Let us pass to this function and let us place
[brjak] on it. But now let us use [obaldennuju] [fichu] Of ollyDbg
of – reverse laying out. For this let us first transfer diagnostic
routine into the regime of the laying out of the code by the
pressure of the keys For ctrl+F11. We await, until program
interrupts on our [brjake]. It interrupted. Now we begin to
harvest key “-” minus on the digital keyboard. In this case Olly
begins to produce the reverse laying out of the code, in this case
showing the state of registers and stack at that moment, when this
instruction was carried out. We leave into this place.

As we see precisely hence it was caused MessageBox. But there are
no conditional jumps; therefore let us continue reverse laying
out, until we leave here here.

If passage to 00C4CE 2c was carried out, then program would jump
over through the leap of 00C4CE39, which leads for the
communication about the end of [triala]. Will search for this
place as you already they surmised on the signature. We finish
writing [patch].

Now, if we neglect program, then it will be neglected, and it will
consider itself [zareganoj], but if you visit into Tools->Detect
Of font Of problems->Installed Of fonts and will press in the
appeared window OK, then program will be thrown out into the
system error. To catch the reason for error is simple. It is
necessary to place [brjak] on reading to 005B804C, then to open
Tools->Detect Of font Of problems->Installed Of fonts to harvest
OK and we will fall on checking of [zareganosti]. After which if
we not [zaregany] window is shut normally, but if yes – that here
here I did not greatly understand that he occurs. The whether this
what first [izvratnaja] checking on [zareganost], then whether
still that, but this something causes terrible Gluck and [proga]
falls. These possible places are [poshifrovany] and are deciphered
only with the introduction of key, can everything much simpler. On
the whole it is necessary to read a little about the limitations,
what me it does not absolutely want. If to you it is interesting
to completely force open this program, then I think problems in
you it will not arise, since last [propatchenaja] command was
already in unpacked [proge] and now you can [patchit] any bytes of
program. I round on this. Successes to you in all your
undertakings! PE_Kill.

Complete [iskhodnik] of [patcha] (to 400350 it goes text, but
[dizasm] accepted it for the code):
/* 400320 */PUSH EBX
/* 400321 */JO SHORT FO0F53~1.00400388
/* 400323 */ARPL WORD PTR DS:[ECX+61], BP
/* 400326 */INS BYTE PTR ES:[EDI], DX
/* 400327 */AND BYTE PTR DS:[EDX+75], AH
/* 40032A */IMUL EBP, DWORD PTR SS:[ESP+20], 6D6F7266
/* 400332 */AND BYTE PTR DS:[EAX+45], DL
/* 400335 */POP EDI
/* 400336 */DEC EBX
/* 400337 */IMUL EBP, DWORD PTR SS:[ESP+EBP * 2], 0
/* 40033F */ADD BYTE PTR DS:[ESI+69], DL
/* 400342 */JB SHORT FO0F53~1.004003B8
/* 400344 */JNZ SHORT FO0F53~1.004003A7
/* 400346 */INS BYTE PTR ES:[EDI], DX
/* 400347 */INC ECX

/* 400348 */INS BYTE PTR ES:[EDI], DX
/* 400349 */INS BYTE PTR ES:[EDI], DX
/* 40034A */OUTS DX, DWORD PTR ES:[EDI]
/* 40034B */ARPL WORD PTR DS:[EAX], AX
/* 40034D */ADD BYTE PTR DS:[EAX], AL
/* 40034F */ADD DH, AL
/* 400351 */ADD EAX, FO0F53~1.00694187
/* 400356 */JMP of 41C80922
/* 40035B */IMUL EAX, DWORD PTR DS:[EAX], FFD6C1 DA
/* 400361 */JMP FO0F53~1.00694001
/* 400366 */SUB ECX, 2c0BD000
/* 40036C*/OF MOV BYTE PTR DS:[694228], 0E9
/* 400373 */MOV DWORD PTR DS:[694229], FFD6C155
/* 40037D */JMP FO0F53~1.0069418D
/* 400382 */MOV SI, CX
/* 400385 */MOV BYTE PTR DS:[6942FA], 0E9
/* 40038C*/OF MOV DWORD PTR DS:[6942FB], FFD6C09C
/* 400396 */JMP FO0F53~1.00694248
/* 40039B */MOV EDX, 0A8E5462
/* 4003A0 */MOV BYTE PTR DS:[6943A3], 0E9
/* 4003A7 */MOV DWORD PTR DS:[6943A4], FFD6C00E
/* 4003B1 */JMP FO0F53~1.006942FF
/* 4003B6 */MOV BYTE PTR DS:[6943A3], 0F
/* 4003BD */MOV DWORD PTR DS:[6943A4], 1F82
/* 4003C7 */MOV BYTE PTR DS:[694581], 0BA
/* 4003CE */MOV DWORD PTR DS:[694582], FO0F53~1.004003E7
/* 4003D8 */MOV DWORD PTR DS:[694586], 8B90D2FF
/* 4003E2 */JMP FO0F53~1.006943A3
/* 4003E7 */ADD EAX, EDI
/* 4003E9 */MOV DWORD PTR SS:[EBP+1C7], EAX
/* 4003EF */ADD EDX, 22
/* 4003F2 */MOV BYTE PTR DS:[EAX+F3], 0B9
/* 4003F9 */MOV DWORD PTR DS:[EAX+F4], EDX
/* 4003FF */MOV WORD PTR DS:[EAX+F8], 0D1FF
/* 400408 */RETN
/* 400409 */ADD ECX, 1a
/* 40040C*/OF MOV BYTE PTR DS:[EBX+7], 0BB
/* 400410 */MOV DWORD PTR DS:[EBX+8], ECX
/* 400413 */MOV WORD PTR DS:[EBX+C], 0D3FF
/* 400419 */POP EBX
/* 40041A */PUSH 8000
/* 40041F */PUSH 0
/* 400421 */JMP EBX
/* 400423 */POP EAX
/* 400424 */MOV DWORD PTR DS:[EAX- "], 0C3
/* 40042B */MOV WORD PTR DS:[EAX-2], 0
/* 400431 */PUSHAD
/* 400432 */MOV EAX, DWORD PTR SS:[ESP+20]
/* 400436 */INC EAX
/* 400437 */MOV ECX, DWORD PTR DS:[EAX]
/* 400439 */CMP ECX, 1b80875
/* 40043F */JNZ SHORT FO0F53~1.00400436
/* 400441 */ADD EBX, 2F

/* 400444 */MOV BYTE PTR DS:[EAX], 0B8
/* 400447 */MOV DWORD PTR DS:[EAX+1], EBX
/* 40044A */MOV WORD PTR DS:[EAX+5], 0D0FF
/* 400450 */POPAD
/* 400451 */RETN
/* 400452 */POP EAX
/* 400453 */SUB EAX, "
/* 400456 */MOV DWORD PTR DS:[EAX], 1b80875
/* 40045C*/OF MOV DWORD PTR DS:[EAX+4], C2000000
/* 400463 */PUSH EAX
/* 400464 */PUSHAD
/* 400465 */PUSHFD
/* 400466 */ADD EAX, 0B
/* 400469 */MOV EAX, DWORD PTR DS:[EAX]
/* 40046B */DEC EAX
/* 40046C*/OF MOV ECX, OF DWORD PTR DS:[EAX]
/* 40046E */CMP ECX, D88BD0FF
/* 400474 */JNZ SHORT FO0F53~1.0040046B
/* 400476 */ADD EAX, 2
/* 400479 */MOV BYTE PTR DS:[EAX], 0BB
/* 40047C*/OF MOV DWORD PTR DS:[EAX+1], FO0F53~1.0040048D
/* 400483 */MOV DWORD PTR DS:[EAX+5], 5690D3FF
/* 40048A */POPFD
/* 40048B */POPAD
/* 40048C*/OF RETN
/* 40048D */PUSHAD
/* 40048E */MOV EBX, 10C000
/* 400493 */PUSH 4
/* 400495 */PUSH 1000
/* 40049A */PUSH EBX
/* 40049B */PUSH 0
/* 40049D */MOV EAX, <&kernel32.VirtualAlloc>
/* 4004A2 */CALL DWORD PTR DS:[EAX]
/* 4004A4 */XOR EDX, EDX
/* 4004A6 */MOV ESI, DWORD PTR SS:[ESP+1C]
/* 4004AA */MOV EDI, EAX
/* 4004AC */MOV ECX, EBX
/* 4004AE */REP MOVS BYTE PTR ES:[EDI], BYTE PTR DS:[ESI]
/* 4004B0 */MOV DWORD PTR SS:[ESP+1C], EAX
/* 4004B4 */MOV ECX, 310
/* 4004B9 */ADD ECX, 4
/* 4004BC */MOV DWORD PTR DS:[EAX+ECX], 0
/* 4004C3 */CMP ECX, 58A
/* 4004C9 */JBE SHORT FO0F53~1.004004B9
/* 4004CB */MOV ECX, 0D3608
/* 4004D0 */MOV DWORD PTR DS:[EAX+ECX], 0
/* 4004D7 */MOV ECX, 1001
/* 4004DC */MOV DWORD PTR DS:[EAX+ECX], FO0F53~1.00694001
/* 4004E3 */POPAD
/* 4004E4 */POP ESI
/* 4004E5 */SUB ESI, "
/* 4004E8 */MOV DWORD PTR DS:[ESI], E850D88B
/* 4004EE */MOV DWORD PTR DS:[ESI+4], 14A

/* 4004F5 */PUSHAD
/* 4004F6 */XOR EDI, EDI
/* 4004F8 */INC ESI
/* 4004F9 */MOV EAX, DWORD PTR DS:[ESI]
/* 4004FB */CMP EAX, D0FF0447
/* 400500 */JNZ SHORT FO0F53~1.004004F8
/* 400502 */INC EDI
/* 400503 */CMP EDI, 1
/* 400506 */JE SHORT FO0F53~1.004004F8
/* 400508 */SUB ESI, 2
/* 40050B */MOV BYTE PTR DS:[ESI], 0B8
/* 40050E */ADD EBX, 93
/* 400514 */MOV DWORD PTR DS:[ESI+1], EBX
/* 400517 */MOV WORD PTR DS:[ESI+5], 0D0FF
/* 40051D */POPAD
/* 40051E */JMP ESI
/* 400520 */PUSHAD
/* 400521 */MOV ECX, FO0F53~1.005B804C
/* 400526 */MOV DWORD PTR DS:[ECX], FO0F53~1.00400320
/* 40052C*/OF POPAD
/* 40052D */POP EAX
/* 40052E */DEC EAX
/* 40052F */MOV DWORD PTR DS:[EAX- '], 4478B50
/* 400536 */MOV WORD PTR DS:[EAX-2], 0D0FF
/* 40053C*/OF MOV BYTE PTR DS:[EAX], 0A1
/* 40053F */PUSHAD
/* 400540 */INC EAX
/* 400541 */MOV ECX, DWORD PTR DS:[EAX]
/* 400543 */CMP ECX, 16A2274
/* 400549 */JNZ SHORT FO0F53~1.00400540
/* 40054B */MOV BYTE PTR DS:[EAX], 0EB
/* 40054E */ADD EAX, 24
/* 400551 */MOV BYTE PTR DS:[EAX], 0B9
/* 400554 */MOV DWORD PTR DS:[EAX+1], FO0F53~1.00400564
/* 40055B */MOV WORD PTR DS:[EAX+5], 0D1FF
/* 400561 */POPAD
/* 400562 */JMP EAX
/* 400564 */POP ECX
/* 400565 */MOV BYTE PTR DS:[ECX-2b], 74
/* 400569 */SUB ECX, "
/* 40056C*/OF MOV DWORD PTR DS:[ECX], 87F83
/* 400572 */MOV DWORD PTR DS:[ECX+4], B0A12374
/* 400579 */JMP ECX

