

� ASPROTE CT 1.22 - 1.32 beta 21
UnAsProtecting AsProtect

{Written by ��AndreaG eddon ��}
{andreageddon@ hotm ail.com }

��

[��w w w .reteam .org ��]

IN TR OIN TR OIN TR OIN TR O
Target program : W ebPics 1.8
U rl: http://w w w .express-soft.com /
Crypter: AsProtect 1.22 / 1.32 beta 21
Som eone reported this program in a m ailing list, i w as interested in it
because it is crypted w ith asprotect, w e all know that this crypter is a bad
bone! Alexey Solodovnikov has done a great job, i think this is a good PE
crypter, how ever it is not unbreakable!
Let's go for it.

TOOLSTOOLSTOOLSTOOLS
OllyD ebug, Ida, PeID to recognize the crypter :) nothing else needed, I w ill do
alm ost all the w ork by hand. W ondering about Softice? W ell olly is a
w onderful debugger, it is userm ode but it is really pow erful, i debug and
solve alm ost everything w ith it. Y ou can use softice of course, or W inD bg, or,
if you are com pletely crazy, ntsd :)

D E C R Y PTIN G & D U M PIN GD E C R Y PTIN G & D U M PIN GD E C R Y PTIN G & D U M PIN GD E C R Y PTIN G & D U M PIN G
As usual the purpose is to debug the crypter until it reaches the original
entry point of the program . At that point the sections w ill be com pletely
decrypted, so w e w ill dum p code and data, and eventually rebuild the PE .
F irst of all let's have a look at the PE . Actual entry point is at 00401000 (in
first section, just to trick autom atic tracers), w e see there a

00401000 PU SH w ebpics.0067C001
00401005 CALL w ebpics.0040100B
0040100A C3 R E TN
0040100B C3 R E TN

so it just is a jum p to loader sections (last tw o). W e check the Im port Table
and w e see that it is not valid, that is, w e have all the m odules listed but only
one api per m odule is im ported, so w e know that w e w ill have to rebuild

im ports. I knew aspr w ould have been funny! Tim e to trace now . The loader
is long, so i w ill w rite just the m ain lines w ith som e com m ent.

0067C001 - Starting of the aspr loader

There is som e polim orphic code, that is things like

0067C00E CALL w ebpics.0067C014
0067C013 JM P w ebpics.0067C072 <- interference byte
0067C015 M OV E B X ,-13

check alw ays the calls you execute, you should "step into" them to avoid
losing tracing control. W hen w e see accesses to

0067C022 CM P D W OR D PTR SS:[E B P+25],0
0067C026 M OV D W OR D PTR SS:[E B P+25],E B X

w here ebp is 0067C013, these are global data used by the aspr loader. D ue
to its relocability, the loader can't use fixed addresses, so a loader usually
have to use address relative to itself, then calculate the delta offset to add to
relative addresses to obtain absolute addresses. Aspr also relocates the
dinam yc code it uses.

0067C0D 4 this loop decrypts 0x750 dw ords at the address 0067C160
... there are several layers of decryption in the loader
0067C14A

w hen the loop ends it w ill jum p to decrypted area and continue execution.
The loader is full of crypted routines, this is good for the crypter.

0067C181 decrypt of 06C4 dw ords at 0067C1EA
...
0067C1E 4

there are other 2 decrypt layers, i am not pasting them , the code here sim ply
runs loops to decrypt his next code. W e trace other loops and w e arrive at

0067C6A8 M OV EAX ,D W OR D PTR SS:[E SP+24]
0067C6AC AN D EAX ,FFFF0000
0067C6B 1 AD D EAX ,10000
0067C6B 6 SU B EAX ,10000
0067C6B B CM P W OR D PTR D S:[E AX],5A4D <- M Z
0067C6C0 JN Z SH ORT w ebpics.0067C6B 6

this code takes an address from the kernel32 and w orks on it to obtain its
im agebase (that is m odule handle). W here the address com e from ?
[E sp+24]? Y es, sim ply the kernel before arriving at entry point of the exe
runs this code:

77E 5E B 56 PU SH 4
77E 5E B 58 LEA EAX ,D W OR D PTR SS:[E B P+8]
77E 5E B 5B PU SH EAX
77E 5E B 5C PU SH 9
77E 5E B 5E PU SH -2
77E 5E B 60 CALL D W OR D PTR D S:[Zw SetInform ationThread]
77E 5E B 66 CALL D W OR D PTR SS:[E B P+8] <- call to exe entry point (m ain
thread)
77E 5E B 69 PU SH EAX
77E 5E B 6A CALL kernel32.E xitThread

the pe loader of w in calls our exe m ain thread w ith a call (this is on nt, on 9x
you have a jm p [entry point] but the trick w orks the sam e because first
dw ord in the stack, w hen at entry point, is a return address to the kernel32)
so on the stack w e w ill have a return address to the kernel, that is an
address inside the kernel32 m odule. Once it has the m odule handle w e can
see in the follow ing lines he gets the M Z_H eader->e_lfanew (PE offset)
pointer and then it accesses the original first thunk array. W e arrive here

0067C6E 5 M OV E SI,D W OR D PTR D S:[E B X] -> ptr to crypted api identifiers
0067C6E 7 M OV D W OR D PTR SS:[E B P+325],E SI
0067C6E D CALL w ebpics.0067C6FD -> enter here to see the calculus
0067C6F2 STOS D W OR D PTR E S:[E D I]
0067C6F3 AD D E B X ,4
0067C6F6 CM P D W OR D PTR D S:[E B X],0
0067C6F9 SH ORT w ebpics.0067C6E 5

this code sim ply finds the entry point of som e apis used by the loader
(G etProcAddress, V irtualAlloc and so on). H ow are the apis found? There are
som e crypted identifiers for each api (ones in [ebx]), the aspr begins
scanning the original first thunks of im ported apis to build from api nam es
their cripted identifiers (dw ords), once they are built if they m atch the
crypted identifiers in [ebx] then aspr has found the api he w ants to im port.

0067C46E R E P M OV S B YTE PTR E S:[E D I],B YTE PTR D S:[E SI]

here aspr restores the bytes at 00401000. As w e have seen the entry point of
the application w as 00401000, but that w as a code of the aspr loader, that
address should be part of the code section of the real program . Infact aspr
overw rited it, now it has to restore original code, they are 12 bytes at

0067C476 address. They are crypted of course, w e still have to see
decription routines. N ext w e arrive at 0067C48A and w e find tw o calls at
V irtualAlloc. The w hole code is used to load a dll by hand :). Infact w e see
this call:

0067C4AF PU SH EAX <- address of first allocated area
0067C4B 0 PU SH E B X <- 67CE 1C
0067C4B 1 CALL w ebpics.0067C56B <- decrypt dll

this decrypts the data at 67CE 1C and m aps it into the m em ory allocated by
the first V irtualAlloc. So now w e have a m ap of a dll (a PE file) in m em ory.
W hat's gonna happen?

0067C4FB R E P M OV S D W OR D PTR E S:[E D I],D W OR D PTR D S:[E SI]

there are six of this m ovem ent, each one for a section of the dll. E SI is the
pointer to the section in the dll raw data (first allocated area), E D I is the
pointer to the second allocated area, and w ill be the area w here this dll w ill
w ork in. If w e check the first of these m ovem ent w e see that esi = B 10400
and edi = B 31000 (of course on m y pc the tw o allocated areas are B 10000
and B 30000 respectively). W hat w e notice is that at xx0400 starts the first
section of the dll in the raw file, xx1000 instead is the address in m em ory of
the section (F ileAlignm ent = 400, SectionAlignm ent = 1000), so the PE
header (w ich is under xx0400) is not m apped! If you w ere thinking about
dum ping this dll, w ell, it w ill be an hard task :). H ow ever w e can avoid
dum ping this dll as a PE , w e w ill see it later. After this w orks w e can see

0067C557 CALL D W OR D PTR SS:[E B P+39D] ; kernel32.V irtualFree
0067C55D PU SH 00B 4B 000
0067C562 R E TN

the first allocated area is released, the aspr no longer needs it. Then w e jum p
to the second allocated area (the dll). N ow the tracing m oves to this allocated
area. K eep in m ind that m y allocated area address is B 30000, so all
addresses i w ill paste are relative to this address. W e continue and w e see
that at B 4B 04D there are tw o calls at G etProcAddress to get entry for
V irtualAlloc and V irtualFree. Then V irtualAlloc is called to alloc a new area,
and w e get here:

00B 4B 0D 6 PU SH EAX <- address of new allocated area
00B 4B 0D 7 PU SH E B X <- address of som e crypted data (00B 4B 101 for m e)
00B 4B 0D 8 74050000 CALL 00B 4B 651

the call decrypts data and copies it in the new buffer, then w e see

00B 4B 0D F LEA E D I,D W OR D PTR SS:[E B P+442A45] <- B 4B 101 (crypted
data)
00B 4B 0E 5 M OV E SI,D W OR D PTR SS:[E B P+442975] <- new allocated area
(decrypted)
00B 4B 0E B R E P M OV S B YTE PTR E S:[E D I],B YTE PTR D S:[E SI]

so crypted data is overw ritten w ith the decrypted data. The new allocated
area is no longer needed so at B 4B 0FB you see a V irtualFree. The decrypted
data is the code that follow s this line. Again w e continue tracing and w e see
another V irtualAlloc follow ed by

00B 4B 358 PU SH EAX <- new allocated area
00B 4B 359 PU SH E B X <- 00B 31000 for m e (crypted data)
00B 4B 35A CALL 00B 4B 651

again a new buffer is allocated and filled w ith decrypted data. The
decryption function is alw ays the sam e

int D ecrypt(pCrypted, pD ecrypted);

the size of decrypted data is returned. The decrypted data is executable code,
so the aspr is gonna relocate som e calls, you see a cycle at B 4B 390 that
scans the new allocated code for E 8 and E 9 (call or jum p opcode) and
relocate them . Once relocation is com plete w e arrive to

00B 4B 3C7 R E P M OV S D W OR D PTR E S:[E D I],D W OR D PTR D S:[E SI]

w here esi = new allocated area and edi = crypted data (B 31000). So as
before the crypted is overw ritten w ith decrypted and relocated data.
V irtualFree releases the area used to decrypt and relocate the code. Again,
w e continue an see another V irtualAlloc follow ed by the D ecrypt routine!
This tim e the crypted area is 200h dw ords long and is located at 00B 45000.
At line B 4B 3C7 there is the usual R E P M OV S w hich fills B 45000 w ith
decrypted data. There are still other tw o decrypts to do at address B 47000,
B 49000. The follow ing code contains a loop:

00B 4B 43E
... handle relocation of the m apped dll
00B 4B 484 LOOPD B 4B 43E

this code w ill search in the .reloc section of this "ghost" dll and w ill handle
all the relocations (absoulte addresses are in the form of 0040xxxx for this
ghost PE dll). W e continue tracing and get an interesting code:

00B 4B 496 M OV EAX ,D W OR D PTR D S:[E SI+C] Im port_D escriptor.N am e
00B 4B 499 TE ST EAX ,EAX
00B 4B 49B JE 00B 4B5AB W alk through all im ported descriptors
00B 4B 4A1 AD D EAX ,E D X
00B 4B 4A3 M OV E B X ,EAX
00B 4B 4A5 PU SH EAX
00B 4B 4A6 CALL D W OR D PTR SS:[G etM oduleH andle]
00B 4B 4AC TE ST EAX ,EAX
00B 4B 4AE JN Z SH ORT 00B 4B 4B 7
...
00B 4B 4B 7 M OV D W OR D PTR SS:[E B P+44294D],EAX
00B 4B 4B D M OV D W OR D PTR SS:[E B P+442951],0
00B 4B 4C7 M OV E D X ,D W OR D PTR SS:[E B P+4430D 8]
Im port_D escriptor.OriginalF irstThunk
00B 4B 4CD M OV EAX ,D W OR D PTR D S:[E SI]
00B 4B 4CF TE ST EAX ,EAX
00B 4B 4D 1 JN Z SH ORT 00B 4B 4D 6
00B 4B 4D 3 M OV EAX ,D W OR D PTR D S:[E SI+10]
Im port_D escriptor.F irstThunk
00B 4B 4D 6 AD D EAX ,E D X G ets current api
...
00B 4B 4F3 TE ST E B X ,80000000 Check for im port by ordinal
00B 4B 4F9 JN Z SH ORT 00B 4B 4FF
00B 4B 4FB AD D E B X ,E D X
00B 4B 4FD IN C E B X Avoid Im port_B y_N am e.H int
00B 4B 4FE IN C E B X
00B 4B 4FF PU SH E B X
00B 4B 500 AN D E B X ,7FFFFFFF
00B 4B 506 PU SH E B X
00B 4B 507 PU SH D W OR D PTR SS:[E B P+44294D]
00B 4B 50D CALL D W OR D PTR SS:[G etProcAddress]
...
00B 4B 595 M OV D W OR D PTR D S:[E SI],EAX Set R esolved
OriginalF irstThunk
00B 4B 597 M OV D W OR D PTR D S:[E SI+C],EAX N am e and
00B 4B 59A M OV D W OR D PTR D S:[E SI+10],EAX F irstThunk
00B 4B 59D AD D E SI,14
00B 4B 5A0 M OV E D X ,D W OR D PTR SS:[E B P+4430D 8]
00B 4B 5A6 JM P 00B 4B 496

this code builds the im port table for the m apped dll, the im port api
nam es/m odules are at B 47258, the thunks are at B 470C4. All this w ork just
to m ap an auxiliary dll, decrypt it, relocate it, build its im port thunks. N ow
the code starts executing the code of this dll. G oing on w e w ill see a call

00B 44917 CALL 00B 35018 <- in itializations
00B 4491C CALL 00B 33310 <- w e enter here

you can avoid stepping in the first call, it m akes som e initializations like
handling tls, w orking on registry and com m and line and so on. So w e trace
the second call. W e enter there and again see a lot of code of no interest. Y ou
w ill see various calls to procedures that set seh handlers, then a set of calls
to api such G etV ersion, G etCurrentProcess, G etCom m andLine.
One thing you should know to debug the code is the seh handler trick. That
is tracing the second call you encounter a code like this
xor [eax], eax
w here eax = 0. N othing to w orry about, this is a call to the seh, to see w here
this instruction w ill bring you just w atch in the TIB . N ow since ollydbg does
not allow you to enter a segm ent identifier for the m em ory dum p (or at least
I don't know how to enter it ;-P) you can look at the TE B (TD B if you are on
w in9x) by w atching segm ent register FS: you w ill see both segm ent base
(linear) address and size, so you should look at that address. The first dw ord
is the E xceptionList* for the thread you are tracing. Then you can see
E xceptionList->H andler (that is [E xceptionList+4]) to find the address of the
topm ost seh. So, once you step the previous xor you w ill be transferred to the
seh, that uses to do som ething like:

add [context.eip], 2
xor eax, eax
ret

this tells the system seh m anager to restore the context and continue
execution, so you w ill continue at address context.eip+2. Som etim es you w ill
also see som ething like this in the exception handler

00B 42E 50 X OR E CX ,E CX
00B 42E 52 M OV D W OR D PTR D S:[E AX +4],E CX ;context.D R 0
00B 42E 55 M OV D W OR D PTR D S:[E AX +8],E CX ;context.D R 1
00B 42E 58 M OV D W OR D PTR D S:[E AX +C],E CX ;context.D R 2
00B 42E 5B M OV D W OR D PTR D S:[E AX +10],E CX ;context.D R 3
00B 42E 5E M OV D W OR D PTR D S:[E AX +18],155 ;context.D R 7

w here eax is a pointer to the thread context passed by the system to the
exception handler by [esp+0C], do you rem em ber the exception prototype?

int Seh(E X CE PTION _R E COR D *E xc, void* Fram e, CON TE X T *Context, void*
D ispatcherContext)

R eturn value = 0 m eans "restore context and resum e execution", return
value = 1 m eans "continue to the next seh handler in chain". So this code

fills w ith zeros the debug registers 0 to 3, that is if you had som e B PM set
this trick w ill delete them . Infact these D R x are responsible to hold addresses
of hardw are bpm you set. On D R 7 is put the value 0x0155, that is all local
breakpoint flags are set and other flags are cleared (but som etim es aspr w ill
put 0 in D R 7, this is terrible for debugging!). This interfers w ith the
debugger, so you should avoid to execute these lines if you dont w ant
troubles w hen tracing this code.
So going on w e w ill find the section decrypt:

00B 421AA CALL 00B 3250C ;alloc a buffer
00B 421AF M OV E SI,EAX
00B 421B 1 M OV EAX ,D W OR D PTR D S:[E B X] ;rva of section virtual offset
00B 421B 3 AD D EAX ,D W OR D PTR SS:[E B P-14] ;rva of section virtual offset
00B 421B 6 M OV D W OR D PTR SS:[E B P-4],EAX
00B 421B 9 M OV E CX ,D W OR D PTR D S:[E B X +4] ;virtual size of section
00B 421B C M OV E D X ,E SI ;edx = ptr to buffer
00B 421B E M OV EAX ,D W OR D PTR SS:[E B P-4]
00B 421C1 CALL 00B 41C8C ;copy decrypted section to buffer
00B 421C6 M OV E D I,EAX
00B 421C8 CM P E D I,D W OR D PTR D S:[E B X +4]
00B 421CB JE SH ORT 00B 421D 7
00B 421CD PU SH 0B 42298
00B 421D 2 CALL 00B 41A3C
00B 421D 7 CM P B YTE PTR SS:[E B P-5],0
00B 421D B JN Z SH ORT 00B 421FB
00B 421D D M OV B YTE PTR SS:[E B P-5],1
00B 421E 1 PU SH E SI
00B 421E 2 M OV E SI,D W OR D PTR SS:[E B P-4]
00B 421E 5 AD D E SI,14
00B 421E 8 PU SH D W OR D PTR D S:[E SI]
00B 421EA M OV B YTE PTR D S:[E SI],0C3 ;trick to fool autom atic tracers
00B 421E D CALL E SI ;E SI = 00401014
00B 421E F POP D W OR D PTR D S:[E SI]
00B 421F1 POP E SI
00B 421F2 M OV E D X ,E D I
00B 421F4 M OV EAX ,E SI
00B 421F6 CALL 00B 41CB 4
00B 421FB M OV E CX ,E D I
00B 421FD M OV E D X ,E SI
00B 421FF M OV EAX ,D W OR D PTR SS:[E B P-4]
00B 42202 CALL 00B 351D 0 ;copy decrypted section from buffer to exe im age
00B 42207 M OV E D X ,D W OR D PTR D S:[E B X +4]
00B 4220A M OV EAX ,E SI
00B 4220C CALL 00B 32524 ;free buffer
00B 42211 AD D E B X ,0C

00B 42214 M OV EAX ,D W OR D PTR D S:[E B X +4]
00B 42217 TE ST EAX ,EAX
00B 42219 JA SH ORT 00B 421AA ;go to next section

you see there is a trick for autom atic debuggers, infact if you trace until the
eip goes in first section to find original entry point, you w ill break at
00B 421E D CALL E SI but this is not oep, its just a CALL to a R E T. H ow ever
the interesting thing here is the section decrypt. As you can see its quite
easy, if you are interested in the decrypt algorithm just dig into here:
00B 421C1 CALL 00B 41C8C. So once the sections are decrypted w e have the
im age of the program . N ow w e have to step a little to arrive at the follow ing
point:

00B 42892 LOD S D W OR D PTR D S:[E SI] ;get address (R V A) of current
m odule iat
00B 42893 OR EAX ,EAX
00B 42895 JE SH ORT 00B 428E 1 ;if zero then iat construction is
com plete
00B 42897 M OV E D I,EAX
00B 42899 AD D E D I,D W OR D PTR D S:[B 46978] ;add im age base to obatin V A
00B 4289F M OV D W OR D PTR SS:[E B P-8],E D I
00B 428A2 M OV E B X ,E SI ;ebx = ptr to m odule nam e (string)
00B 428A4 X OR E CX ,E CX
00B 428A6 D E C E CX
00B 428A7 X CH G E SI,E D I
00B 428A9 X OR AL,AL
00B 428AB R E PN E SCAS B YTE PTR E S:[E D I] ;go to end of string
00B 428AD X CH G E SI,E D I
00B 428AF LOD S B YTE PTR D S:[E SI] ;load first byte of crypted api (a flag)
00B 428B 0 CM P AL,0
00B 428B 3 JE SH ORT 00B 42892 ;if flag is zero then goto next m odule
00B 428B 5 CM P AL,6
00B 428B 8 JN Z SH ORT 00B 428C0 ;if flag is 6 then
00B 428BA AD D D W OR D PTR SS:[E B P-8],4 ;api w ill not be resolved here,
see em ulation
00B 428B E JM P SH ORT 00B 428AF ;so goto for next api
;here w e process the api
;w ith the stolen byte m ethod (redirection)
00B 428C0 PU SH E B X ;m odule nam e
00B 428C1 PU SH E SI ;crypted api
00B 428C2 PU SH E B X ;m odule nam e
00B 428C3 LEA E B X ,D W OR D PTR SS:[E B P-8]
00B 428C6 PU SH E B X ;iat va for api to be resolved
00B 428C7 CM P AL,2
00B 428CA JE SH ORT 00B 428D 2

00B 428CC M OV ZX E CX ,B YTE PTR D S:[E SI] ;get 2nd byte of crypted api (api
nam e length)
00B 428CF IN C E CX
00B 428D 0 JM P SH ORT 00B 428D 7
00B 428D 2 M OV E CX ,4
00B 428D 7 AD D E SI,E CX
00B 428D 9 CALL 00B 425F0 ;w ork is done here
00B 428D E POP E B X
00B 428D F JM P SH ORT 00B 428AF

this is a cycle w here the im port table is built. W e now have the address of
the original IAT of the program (first tim e you arrive at this cicle the va of
the api iat va w ill be 005E C1E 0, that is the base address of the iat) and the
crypted data relative to im ported api nam es. H ow is this data stored? Y ou
have this form :

1 byte - N U LL \
n bytes - M odule nam e |-> m odule descriptor
1 byte - N U LL /
1 byte - Api flag \
1 byte - Api length |-> api descriptor
n bytes - C rypted api nam e /
... array of api descriptors

there is the m odule descriptor and all its api descriptor. As you can im agine
the tw o api (flag and length) bytes w ere the original H IN T field, and the
follow ing w ere the original api nam e bytes. To see how real api address is
gained w e have to dig into the call. I w ill paste only the m ain lines of the
routine:

00B 42609 LEA EAX ,D W OR D PTR SS:[E B P-101] ;pointer to buffer area
(stack)
00B 4260F X OR E CX ,E CX
00B 42611 M OV E D X ,100 ;size of area
00B 42616 CALL 00B 32794 ;clear buffer area
...
00B 4263B M OV B L,B YTE PTR SS:[E B P-1]
00B 4263E M OV E CX ,E B X ;api string size
00B 42640 LEA EAX ,D W OR D PTR SS:[E B P-101] ;pointer to buffer area
00B 42646 M OV E D X ,E SI ;edx = api crypted bytes
00B 42648 CALL 00B 351D 0 ;fill buffer area w ith crypted bytes
...
00B 4264F M OV E CX ,0B 46D 5A ;ptr to som e param eter
00B 42654 M OV E D X ,E B X ;api string size
00B 42656 LEA EAX ,D W OR D PTR SS:[E B P-101] ;ptr to buffer area

00B 4265C CALL 00B 40E 54 ;decrypt api nam e
...
00B 42661 LEA E SI,D W OR D PTR SS:[E B P-101]
00B 42667 PU SH E SI ;ptr decrypted api
00B 42668 M OV EAX ,D W OR D PTR SS:[E B P+C]
00B 4266B PU SH EAX ;ptr to m odule nam e
00B 4266C CALL 00B 422C4 ;get the api entry point
00B 42671 CALL 00B 42500 ;get stolen bytes
00B 42676 M OV E D X ,D W OR D PTR D S:[E D I]
00B 42678 M OV D W OR D PTR D S:[E D X],EAX ;store redirection address in iat

a buffer is created and zeroed, then crypted api bytes are copied in it and
decrypted. Once the nam e of the api is decrypted the aspr gets its address,
then the stolen byte m ethod is applied. H ow does it w ork? W ell in the final
executable the situation w ill be this:

executable redirection bridge dll

...

...
call [api] --->
...
...
...
...
...

...

...
api instruction1
api instruction2
api instruction3
...
jm p api + n --->
...

...

...
api instruction1 (stolen!)
api instruction2
api instruction3
...
api instruction n
...

the aspr scans first n instruction at api entry point (n is variable), copies it in
the redirection bridge (a buffer in the process space, 0x00C30000 in m y pc),
then adds a jum p to the real api to continue execution. So the im port address
in the iat w ill not be the one of the api but the one of the redirection bridge.
This is a n ice trick, it also prevents api breakpoints: infact you usually set a
bpx on the entry point of the api, but such entry point is not executed so the
debugger w ill not break. To avoid this just put the bpx som e line after the api
ep. N ote that not all the api are redirected w ith stolen bytes, w hen api flag is
01 the real api address is put in the iat.
W hen all this cycle w ill be executed, the iat w ill be alm ost com plete: som e
apis are not resolved, do you rem em ber this line?

00B 428BA AD D D W OR D PTR SS:[E B P-8],4 ;api w ill not be resolved here,
see em ulation

now let's see how they are built: w e arrive at this loop

00C38658 LOD S B YTE PTR D S:[E SI] ;get api flag
00C38659 OR AL,AL
00C3865B JE SH ORT 00C38679 ;if flag==0 then iat is finished
00C3865D D E C AL
;the flag is an index in an em ulation array, so it is decrem ented
;(array 0 based) and the pointer is calculated
00C3865F SH L EAX ,2 ;m ultiply index * 4
00C38662 AD D EAX ,D W OR D PTR SS:[E SP+8]
00C38666 M OV E B X ,D W OR D PTR D S:[E AX] ;get routine[index*4]
00C38668 LOD S D W OR D PTR D S:[E SI]
00C38669 AD D EAX ,D W OR D PTR SS:[E SP+4] ;get va of iat address to be
filled
00C3866D M OV D W OR D PTR D S:[E AX],E B X ;store the thunk to em ulated
api
00C3866F X OR EAX ,EAX
00C38671 M OV D W OR D PTR D S:[E SI-4],EAX
00C38674 M OV B YTE PTR D S:[E SI-5],AL
00C38677 JM P SH ORT 00C38658
00C38679 R E TN 8

the routines that em ulate apis are stored in the 00B 4xx bridge, so if you the
[E SP+8] param eter you see all the addresses of all possible em ulations. Y ou
can also list all corresponding index, this helps you if you w ant to m ake an
unpacker :). V iew ing all the redirection routines you can easly figure out
w hat api do they em ulate. W e w ill see that you not alw ays can just put the
address of the em ulated api to rebuild iat, you have to re add these
em ulation strips in the code.
W e continue tracing and w e arrive at this code:

00B 439F3 50 PU SH EAX
00B 439F4 A1 0C56B 400 M OV EAX ,D W OR D PTR D S:[B 4560C]
00B 439F9 8B 40 04 M OV EAX ,D W OR D PTR D S:[E AX +4]
00B 439FC FFD 0 CALL EAX ; 005CE524 <- routine inside the
program !

Are w e at oep??? N o. If you trace this call you w ill see that a routine of the
decrypted program is executed, then the execution flow w ill return to the
instruction follow ing the call. So the aspr loader calls som e routines in the
code before it arrives to the original entry point. H ow m any calls are there?
W ell w e can see in 00B 4560C there is a pointer, that is 00b46988, w hich
points to:

00B 46988 00 00 00 00 24 E 5 5C 00 00 00 00 00 00 00 00 00
00B 46998 08 E 5 5C 00 00 00 00 00 00 00 00 00 48 E 5 5C 00
00B 469A8 98 E 5 5C 00 38 E 5 5C 00 00 00 00 00 00 00 00 00

there are 5 pointers to program routines: 005CE 524, 005CE 508, 005CE 548,
005CE 598 and 005CE 538. If you continue tracing you w ill see that all these
routines are called in that order, except 005CE 548. It seem s that these
routines can be avoided in the final unpacked exe. W e w ill see it later. G oing
on you can find problem s in the seh trick, the debugger w ill not run correctly
and w ill end debugged process. To avoid this just locate the seh the debugger
is not able to handle and avoid its call. For exam ple:

00B 42D 49 X OR EAX ,EAX
00B 42D 4B PU SH D W OR D PTR FS:[E AX]
00B 42D 4E M OV D W OR D PTR FS:[E AX],E SP
00B 42D 51 X OR D W OR D PTR D S:[E AX],EAX <- seh call
00B 42D 53 POP D W OR D PTR FS:[0] ; 0012FFE 0
00B 42D 5A POP EAX
00B 42D 5B CM P D W OR D PTR D S:[B 46D 84],0
00B 42D 62 JE SH ORT 00B 42D 78

you can nop the xor (seh call) instruction. Infact the seh trick sim ply m akes a
turn-around execution and then continues at the line after the xor. H ow ever,
now all the w ork is done, sections are decrypted, iat is built, w e are about to
go to oep. W e arrive at a code like this

00B 42D 81 CM P D W OR D PTR D S:[E AX],0
00B 42D 84 JE SH ORT 00B 42D 88
00B 42D 86 PU SH D W OR D PTR D S:[E AX]
00B 42D 88 PU SH D W OR D PTR SS:[E B P-10]
00B 42D 8B PU SH D W OR D PTR SS:[E B P-14] ;00C3B 460
00B 42D 8E R E TN

and the execution m oves to the 00C3xxxx m em ory area. So now w e are
outside the 00B 4xxxx (w hich is the self-m apped dll). So w e can think w e are
near the oep. The base of this area is 0x00C30000 and its length is 0xC000,
so you can translate the addresses i w ill paste to your address for this
m em ory bridge. Stepping in this bridge w e w ill see som e decrypt cycles:

00C35617
... 1st decrypt loop
00C35987

00C34B 99
... 2nd decrypt loop

00C34B F0

00C34C52
... 3rd
00C34CC3

00C34D 3D
... 4th
00C34D B 7

00C34E 11
... 5th
00C34E D B

00C34F41
... 6th
00C34FD C

00C35029
... 7th
00C350D 3

00C35153
... 9th
00c35247

00C352E 0
... 10th
00C3535D

ten decypt loops, each one decrypts the code im m ediatly follow ing. After all
this decryption you arrive at

00C35395 JM P SH ORT 00C35397
00C35397 55 PU SH E B P <- stolen eip bytes (in blue)!
00C35398 8B E C M OV E B P,E SP
00C3539A 83C4 F0 AD D E SP,-10
00C3539D 53 PU SH E B X
00C3539E B 8 80E 65C00 M OV EAX ,5CE 680
00C353A3 PU SH 5CE D 24
00C353A8 R E TN

ok, w e arrived at the entry point! The last push indicates the oep. It is built at
runtim e and is contained at m em ory location 00C353A4. Look at the stolen
bytes (the blue ones): they w ere in the original exe im age, so you have to

rem em ber them w hen you w ill rebuild the exe. N ow you can use any pe
dum per and dum p all pe im age. W ell, w e have to dum p redirection m em ory
bridges too! That is, the one at 00B 3xxxx (length 0x01D 000) and the one at
00C3xxxx (length 0xC000), infact dum ping these bridges w ill allow us to
rebuild IT correctly.
N OTE ! I assum e after the dum p you have F ileAlignm ent = 0x1000, if you
dum ped and fixed it to 0x400 or if you have F ileAlignm ent !=
SectionAlignm ent then all the addresses you w ill see from now on are
different and you w ill have to recalculate them .

R E B U ILD IN G & F IX IN GR E B U ILD IN G & F IX IN GR E B U ILD IN G & F IX IN GR E B U ILD IN G & F IX IN G
Ok the file is dum ped. W e have seen that the im port table is crypted, part of
the im ported api are redirected and em ulated. There are also the stolen
bytes at the entry point. So w e have a bit of w ork to do. F irst of all w e fix the
entry point. In the dum ped exe w e see this:

005CE D 18 0000 AD D B YTE PTR D S:[E AX],AL
005CE D 1A 0000 AD D B YTE PTR D S:[E AX],AL
005CE D 1C 0000 AD D B YTE PTR D S:[E AX],AL
005CE D 1E 0000 AD D B YTE PTR D S:[E AX],AL
005CE D 20 0000 AD D B YTE PTR D S:[E AX],AL
005CE D 22 0000 AD D B YTE PTR D S:[E AX],AL
005CE D 24 E 8 D 77AE 3FF CALL w ebpics.00406800

do you rem em ber the oep stolen bytes w e've seen just before the jum p to the
oep? Tim e to put them to their place! So the fixed code w ill be

005CE D 18 55 push ebp
005CE D 19 8B E C m ov ebp, esp
005CE D 1B 83 C4 F0 add esp, 0FFFFFFF0h
005CE D 1E 53 push ebx
005CE D 1F B 8 80 E 6 5C 00 m ov eax, offset dw ord_5CE 680
005CE D 24 E 8 D 7 7A E 3 FF call sub_406800
the bytes are ok, now just use a peditor and change the E IP from 0x1000 to
0x001CE D 18. Ok now w e run the program and... aren't you expecting it to
run! W e have to put back im port table. This w ill be really funny. F irst of all,
w e dum ped the tw o api redirection/em ulation m em ory bridges. N ow the one
at 0x00C3xxxx is for api redirection and stolen bytes, the one at 0x00B 4xxxx
is for api em ulation. Let's look at the im port address table in the dum ped
exe. It starts at 0x005E C1E 0. W e see the dum ped addresses in there, if you
check at runtim e you can resolve all the m odules:

005E C1E 0
... kernel32 (rebuild)
005E C280

005E C288
... user32
005E C294

005E C29C
... advapi32
005E C2A4

005E C2AC
... oleaut32
005E C2B 4

005E C2B C
... kernel32 (rebuild)
005E C2C8

005E C2D 0
... advapi32
005E C304

005E C30C
... kernel32 (rebuild)
005E C4CC

005E C4D 4 m pr

005E C4D C
... version
005E C4E 4

005E C4E C
... gdi32
005E C640

005E C648
... user32
005E C940

005E C948 kernel32 (rebuild)

005E C950
... oleaut32
005E C96C

005E C974
... ole32
005E C9C4

005E C9CC
... oleaut32
005E C9E 0

005E C9E 8
... com ctl32 (rebuild)
005E CA48

005E CA50
... w inspool
005E CA5C

005E CA64
... shell32
005E CA7C

005E CA84
... w in inet
005E CA90

005E CA98
... urlm on
005E CAA0

005E CAA8
... shell32
005E CAB C

005E CAC4
... avifil32
005E CAD 0

005E CAD 8 w inm m

the "rebuild" label indicates m odules that have em ulated or redirected apis.
W e start from the redirected/stolen byte apis, that is the bridge at 0xC30000.
In the m odules w e have addresses like

dw ord_5E C1E 0 dd 0C3948Ch

so to w rite an autom atic rebuilder w e have to:

- open the dum ped bridge
- go to the offset at w hich the api is thunking
- read how m any stolen bytes are there before the "jum p api"
- once w e get the real api address subtract the num ber of stolen bytes so w e
have the api entry.
W ell this is not the best m ethod, using the sym bols api you can get, given an
address, the api nam e + offset. For exam ple if w e look at som e instruction
after M essageB oxA w e w ould have som ething like
user32.M essageB oxA + 0x10
yeah, the sam e w ay sym bols are resolved in softice and olly :). H ow ever the
m ethod i've w ritten w orks. W e have to check the 0x00C3xxxx bridge, and w e
see that api redirection is just in tw o form s:

1- jm p version
00C39548 55 push ebp
00C39549 8B E C m ov ebp, esp
00C3954B FF 75 10 push dw ord ptr [ebp+10h]
00C3954E FF 75 0C push dw ord ptr [ebp+0Ch]
00C39551 FF 75 08 push dw ord ptr [ebp+8]
00C39554 6A FF push 0FFFFFFFFh
00C39556 E 9 F7 5A 22 77 jm p near ptr 77E 5F052h
2- push/ret version
00C394B 8 55 push ebp
00C394B 9 8B E C m ov ebp, esp
00C394B B FF 75 10 push dw ord ptr [ebp+10h]
00C394B E FF 75 0C push dw ord ptr [ebp+0Ch]
00C394C1 FF 75 08 push dw ord ptr [ebp+8]
00C394C4 6A FF push 0FFFFFFFFh
00C394C6 68 42 9E E 5 77 push 77E 59E 42h
00C394CB C3 retn
so w e know w e have to count bytes and check for E 9 or C3 opcode. Of course
there could be som e interference (for exam ple a push 0xC3), how ever w e w ill
see there is only one byte interference in all api w e are going to resolve, so
no need to w rite a m ore com plex analisys routine. H ere is the code

-----8<---
#include <w indow s.h>

//param s
#define T_IAT_START startaddress
#define T_IAT_E N D endaddress
#define LOAD _N AM E "nam e of foreign dll"

#define B R ID G E _BASE 0xC30000 //for m e its C30000
#define PROG N AM E "nam e of dum ped exe"

#define B R ID G E N AM E "nam e of dum ped bridge"

int W IN API W inM ain(H IN STAN CE hInst, H IN STAN CE hPreInst, LPSTR
Cm dLine, int Cm dShow)
{
 H AN D LE hTarget, hB ridge;
 void *tB uffer, *bB uffer;
 D W OR D tem p, tSize, bSize;
 D W OR D *B ase, Tem pAddr, Tem pApi, D eltaIat;
 B YTE OpCode;
 int i;

 //open program file
 hTarget = CreateF ile(PROG N AM E , G E N E R IC_R EAD + G E N E R IC_W R ITE ,
N U LL, N U LL,
 OPE N _E X ISTIN G , F ILE _ATTR IB U TE _N OR M AL, N U LL);
 tSize = G etF ileSize(hTarget, & tem p);
 tB uffer = m alloc(tSize);
 R eadF ile(hTarget, tB uffer, tSize, & tem p, N U LL);

 //open redirect bridge dum p
 hB ridge = CreateF ile(B R ID G E N AM E , G E N E R IC_R EAD + G E N E R IC_W R ITE ,
N U LL, N U LL,
 OPE N _E X ISTIN G , F ILE _ATTR IB U TE _N OR M AL, N U LL);
 bSize = G etF ileSize(hB ridge, & tem p);
 bB uffer = m alloc(bSize);
 R eadF ile(hB ridge, bB uffer, bSize, & tem p, N U LL);
 CloseH andle(hB ridge); //bridge handle no longer needed

 LoadLibrary(LOAD _N AM E); //m odules that are not loaded from this src

 D eltaIat = 0;
 w hile(T_IAT_START + D eltaIat <= T_IAT_E N D)
 {
 B ase = ((D W OR D *)tB uffer + ((T_IAT_START + D eltaIat) / 4));
 Tem pAddr = *B ase;
 if(Tem pAddr > B R ID G E _BASE)
 { //process only first redirection m ethod
 //second redirect m ethod has 0x00B 30000 base
 //so the check should be adjusted according to that base (dynam ic)
 Tem pAddr -= B R ID G E _BASE ;
 i = 0;
 w hile(true)
 {
 OpCode = ((B YTE *)bB uffer)[Tem pAddr + i];

 if(OpCode == 0xC3) //is it a return?
 {
 if((((B YTE *)bB uffer)[Tem pAddr + i - 5]) == 0x68)
 { //w as previous instruction a push?
 tem p = Tem pAddr + i - 4;
 __asm m ov eax, bB uffer
 __asm add eax, tem p
 __asm m ov eax, [eax]
 __asm m ov [Tem pApi], eax
 i -= 6;
 break; //then w e have found the push/ret to va
 }
 }
 if(OpCode == 0xE 9) //is it a jum p?
 {
 tem p = Tem pAddr + i + 1; //next dw ord is va
 __asm m ov eax, bB uffer
 __asm add eax, tem p
 __asm m ov eax, [eax]
 __asm m ov [Tem pApi], eax
 //E 9 is relative jum p so w e m ust add the calling va
 Tem pApi += Tem pAddr + B R ID G E _BASE + i + 5;
 i--;
 break; //then next bytes are the va
 }
 i++;
 }
 //now find the ep of api
 w hile(i>=0)
 {
 Tem pApi--;
 if(((B YTE *)bB uffer)[Tem pAddr + i] != ((B YTE *)(Tem pApi))[0])
 {
 //if som e opcode is different then there is code ignjction
 M essageB ox(N U LL, "D ifferent opcodes", "E rror", N U LL);
 CloseH andle(hTarget);
 return 0;
 }
 i--;
 } //at the end Tem pApi = E P of api
 //w rite ep of api
 SetF ilePointer(hTarget, T_IAT_START + D eltaIat, N U LL, F ILE _B E G IN);
 W riteF ile(hTarget, & Tem pApi, 4, & tem p, N U LL);
 }
 D eltaIat += 4;

 }
 CloseH andle(hTarget);
 return 0;
}
-----8<---

doh! looks like a m onkey w rote this code! H ow ever you just have to set the
param eters in the defines. In particular:

T_IAT_START
T_IAT_E N D

these define the first and the last C3xx thunked apis you w ant to resolve.
N ote that all thunks that are in the m iddle of this interval m ust have a C3xx
address, not a B 4xx or other. So for exam ple for first m odule you should set
start=005E C1E 0 and end=005E C204, because at 005E C208 there is a B 4xx
address. So you resolve the first group. To continue you start from
005E C20C and end at 005E C238, again after this address there are tw o B 4xx
addresses, and so on. The foreign dll is a dll that is not m apped in m em ory
(in our case kernel32 is present, com ctl32 no), so you should m ap it w hen
resolving its relative apis.
For this program i have only a byte interference, that is at 005E CA38, infact
w e see it calls this code in the bridge

00C3A00C 55 push ebp
00C3A00D 8B E C m ov ebp, esp
00C3A00F 51 push ecx
00C3A010 68 C7 E 9 96 71 push 7196E 9C7h
00C3A015 C3 retn
that E 9 is an interference. Y ou can fix it just w atching the asprotected
program and tracing m anually this thunk (or coding a better routine!). Ok,
now all the 0x00C3xx w ork is done. N ow in the iat array w e have all api
addresses (w orking F irstThunks). N ote! Pay attention to relocation! Infact
you could have a m odule relocated in the asprotected program process, but
w hen trying to rebuild IT, w e could have the sam e m odule not relocated. So
the F irstThunks could not w ork. To avoid this you can dum p the relocated
dll, or you can look at the E xecutable M odules w indow in ollydebug, then you
see the path of relocated dlls
Path=D :\W IN D OW S\W inSxS\x86_M icrosoft.W indow s.Com m on-
Controls_6595b64144ccf1df_6.0.0.0_x-w w _1382d70a\com ctl32.dll
and you can copy that dll and use it in your ow n directory (or if you still have
problem s you can dum p such relocated dll). Y ou only need this to correctly
resolve api nam es, you w ill not need relocated dll for the final unpacked exe.
Once 0x00C3xx is done w e need to resolve the 0x00B 4xx (em ulated) trick.

Luckily there are few (11) apis using this trick. Som e are duplicates, so let's
see every single em ulated api.

1 (005E C208 dw ord_5E C208 dd 0B 41388h)

 00B 41388 push 0
 00B 4138A call sub_B 35158
 00B 4138F push dw ord ptr ds:0B 46CE 8h
 00B 41395 pop eax
 00B 41396 retn

this is a w rapper at G etV ersion function. As you can see there is a call to
G etM oduleH andle, but it's not useful because the last value returned in eax is
in 0B 46CE 8, that is a previously stored return value of G etV ersion, this is a
trick to fool autom atic tracers that w ould try to determ ine im ported api by
tracing the interm odule call. W e could substitute this api just w ith the
address of the api, but it is not alw ays possible. Ok no problem , w e just have
to add som e em ulated apis in som e cave and then fix the iat at runtim e. W e
w ill see it later.

2 (005E C23C dw ord_5E C23C dd 0B 40E F0h)

 00B 40E F0 push ebp
 00B 40E F1 m ov ebp, esp
 00B 40E F3 m ov edx, [ebp+0Ch]
 00B 40E F6 m ov eax, [ebp+8]
 00B 40E F9 m ov ecx, ds:0B 4543Ch
 00B 40E FF m ov ecx, [ecx]
 00B 40F01 cm p ecx, eax
 00B 40F03 jnz short loc_B 40F0E
 00B 40F05 m ov eax, ds:0B 45350h[edx*4]
 00B 40F0C jm p short loc_B 40F15
 00B 40F0E push edx
 00B 40F0F push eax
 00B 40F10 call sub_B 35160
 00B 40F15 pop ebp
 00B 40F16 retn 8

this w rapper calls G etProcAddress in case of a standard call. Insted of the
api nam e the param eter can be a num ber, so the aspr does not call
G etProcAddress but an internal function corresponding to the array in
0B 45350. I've run the program but it seem s this second case never happens
(in this program).

3 (005E C240 dw ord_5E C240 dd 0B 41360h)

 00B 41360 push ebp
 00B 41361 m ov ebp, esp
 00B 41363 m ov eax, [ebp+8]
 00B 41366 test eax, eax
 00B 41368 jnz short loc_B 4137D
 00B 4136A cm p dw ord ptr ds:0B 46978h, 400000h
 00B 41374 jnz short loc_B 4137D
 00B 41376 m ov eax, ds:0B 46978h
 00B 4137B jm p short loc_B 41383
 00B 4137D push eax
 00B 4137E call sub_B35158
 00B 41383 pop ebp
 00B 41384 retn 4
a w rap to G etM oduleH andle. If the param eter (ebp+8) is N U LL, then the
program avoids calling the function and returns 0x00400000 (standard
hInstance of a standard exe), else calls the function to find the real m odule
im agebase and returns it.

4 (005E C254 dw ord_5E C254 dd 0B 413D 0h)

 00B 413D 0 push 0
 00B 413D 2 call sub_B 35158
 00B 413D 7 push dw ord ptr ds:0B 46CE 8h
 00B 413D D pop eax
 00B 413D E m ov eax, ds:0B 46CF8h
 00B 413E 4 retn
The call is to G etM oduleH andleA function, but as you can see at the end the
B 46CF8 address is returned, that is the pointer to the com m and line for the
program , so this is the em ulator for G etCom m andLineA.

5 (005E C390 dw ord_5E C390 dd 0B 413E 8h)

 00B 413E 8 push ebp
 00B 413E 9 m ov ebp, esp
 00B 413E B m ov eax, ds:0B 46CF8h
 00B 413F1 m ov eax, [ebp+8]
 00B 413F4 pop ebp
 00B 413F5 retn 4

this just returns the only param eter this function takes ([ebp+8]) Can't be
fixed w ith an api, it m ust be replicated!

6 (005E C454 dw ord_5E C454 dd 0B 413C0h)

 00B 413C0 push ebp
 00B 413C1 m ov ebp, esp
 00B 413C3 call sub_B 35170
 00B 413C8 m ov eax, ds:0B 46CF4h
 00B 413CD pop ebp
 00B 413CE retn
The call is at G etV ersion, but the return value is alw ays the one at 0B 46CF4,
that is a value that chagnes at runtim e, w e w ill see it later.
7 (005E C464 dw ord_5E C464 dd 0B 413F8)

 00B 413F8 push ebp
 00B 413F9 m ov ebp, esp
 00B 413FB pop ebp
 00B 413FC retn 4
this is a null call, but it has a param eter so pay attention to the stack, you
can't nop it.

Ok there are not other calls. The problem now is: w e can't just put the
address of em ulated api in the IAT for som e of them . W hen buiding the IT
the OriginalF irstThunks and F irstThunks of these api m ust be valid (or w e
have to split the m odules in m ore descriptors), so the easiest thing is to:
- m ake a w orking IT so the api address w ill be w ritten in the IAT for these
apis
- add the needed em ulation routines som ew here
- change the entry point so w e fix at runtim e the F irstThunk of the em ulated
apis (so every F irstThunk points to em ulated code)
So for now w e can replace all 0x00B 4xx calls w ith som e valid api address,
w e can choose the address of the api they refer to, so the fixed thunks w ill
be:

005E C208 dd 0B 41388 -> 77E 5C486 (G etV ersion)
005E C23C dd 0B 40E F0 -> 77E 5A5FD (G etProcAddress)
005E C240 dd 0B 41360 -> 77E 59F93 (G etM oduleH andleA)
005E C254 dd 0B 413D 0 -> 77E 5C938 (G etCom m andLineA)
005E C2C8 dd 0B 41360 -> 77E 59F93 (G etM oduleH andleA)
005E C390 dd 0B 413E 8 -> 77E 5751A (return param eter? let's m ake a
G etTickCount)
005E C3D C dd 0B 41388 -> 77E 5C486 (G etV ersion)
005E C414 dd 0B 40E F0 -> 77E 5A5FD (G etProcAddress)
005E C41C dd 0B 41360 -> 77E 59F93 (G etM oduleH andleA)
005E C454 dd 0B 413C0 -> 77E 5C486 (changing value? lets m ake
G etTickCount)
005E C464 dd 0B 413F8 -> 77E 5751A (null, so lets m ake another
G etTickCount)

now all our IAT is filled w ith valid addresses of api (rem em ber that w e w ill
change them later, so for now w e just need som e valid api to be in the IT).
W hy w e did this? B ecause now w e can build a new im port table w ith the 23
im ported m odules. Once all the descriptor are ok, w e have each descriptor in
this form :

IM AG E _IM PORT_D E SCR IPTOR .OriginalF irstThunk: w e have to build it
IM AG E _IM PORT_D E SCR IPTOR .Tim eD ateStam p: 0
IM AG E _IM PORT_D E SCR IPTOR .Forw arderChain: -1
IM AG E _IM PORT_D E SCR IPTOR .N am e: ptr to dll nam e
IM AG E _IM PORT_D E SCR IPTOR .F irstThunk: ptr to IAT data (w e've just
built it!)

so it is easy to rebuild the IT, just look into im ported m odule, find the api
that has export address == first thunk, then copy the nam e of such api. W e
can put the new IT at offset 0x0028E E 00, it is the zero padding near the end
of file. The it w ill be 24*5 = 120 bytes long (0x78, 23 m odules + 1 null
descriptor). H ere is an exam ple of the it:

... other dll nam es
75 73 65 72 33 32 2E 64 6C 6C 00 00 00 00 00 00 user32.dll
6B 65 72 6E 65 6C 33 32 2E 64 6C 6C 00 00 00 00 kernel32.dll
0C 13 29 00 00 00 00 00 FF FF FF FF F0 E D 28 00
E 0 C1 1E 00 B 4 13 29 00 00 00 00 00 FF FF FF FF
E 0 E D 28 00 88 C2 1E 00
... other im port descriptors

i've w ritten the nam e of each im ported m odule, then all the 5-dw ords
dscriptors. As you can see OriginalF irstThunk = F irstThunk = IAT array of
api addresses. The dll nam es are ok. So if you now open the program w ith a
pe editor you w ill see in the im port table all 23 dll m odules loaded, but no
api nam es. H ow ever, having the im port api addresses w ill resolve this
problem , w e can just use an im port rebuilder: infact this step is m echanical,
w e have to search all im port address in the im ported m odules and w rite
their corresponding nam es. I used W ark (w w w .pm ode.cjb.net), a tool of
som e friends of m ine, you can use any rebuilder you w ant, it just m ust have
this rebuilding feature (that is, translation of F irstThunk to
OriginalF irstThunk). Still pay attention to relocations, here com ctl32.dll is
relocated, so if a rebuilder sim ply uses LoadLibrary to load the SY STE M dll,
the rebuild w ill fail (infact I had to w rite all the 25 OriginalF irstThunks for
com ctl32 by hand!). Y ou can avoid this w riting your ow n IAT-IT translator, i
think i w ill w rite m ine one day :). B ack to us, now the im port table is done.
W e have all the 23 im port m odules, each one w ith all im ported api nam es
resolved correctly. Perfect. Is this the end? N o. W e have to re-add the
em ulated apis! If you rem em ber the em ulated apis w ere:

 iat im port address

1 005E C208 00B 41388 G etV ersion
2 005E C23C 00B 40E F0 G etProcAddress
3 005E C240 00B 41360 G etM oduleH andle
4 005E C254 00B 413D 0 G etCom m andLine
5 005E C2C8 00B 41360 G etM oduleH andle
6 005E C390 00B 413E 8 return param eter
7 005E C3D C 00B 41388 G etV ersion
8 005E C414 00B 40E F0 G etProcAddress
9 005E C41C 00B 41360 G etM oduleH andle
A 005E C454 00B 413C0 som e changing value
B 005E C464 00B 413F8 null + stack

i have already listed the code of em ulation routines. The 1 and 7 can be fixed
just by putting in the iat the address of the G etV ersion api. Infact the return
value is the one provided by G etV ersion. You should alw ays check the caller
to be sure that the param s are ok (otherw ise stack w ill be corrupted). If you
follow an xref to 5E C3D C you see

0048593C jnb short loc_48599C
0048593E call sub_406D 00
00485943 and eax, 0FFh
00485948 cm p ax, 4
the call is perfect, so no problem s of stack, w e can fix it w ith G etV ersion api
address. Tim e to fix 2 and 8. W e have seen this em ulation is for
G etProcAddress. So as before let's find som e xref to check out the caller
code:

0040E 72D push offset aG etdiskfreespa ; "G etD iskFreeSpaceE xA"
0040E 732 push ebx
0040E 733 call sub_406C90
0040E 738 m ov ds:dw ord_5CF13C, eax
this too is a valid code. The problem w ith this em ulation could be the fact
that instead of an api nam e the program could pass a num ber, how ever i
m onitored the em ulation routine and it seem s that a num ber is never passed.
So again as before, w e can put in the iat the address of G etProcAddress api.
N ext w e have 3, 5 and 9. Again you can go and see som e xref to check the
caller code. Y ou w ill find it's all ok, so w e can fix it w ith the
G etM oduleH andle api. Let's continue w ith em ulation num ber 4, w e can fix it
w ith G etCom m andLine api. W e are now at 6th em ulated api. W e cant fix it
w ith a real api, how ever the em ulation code is sim ple because it just returns
the param eter passed to the function. So w e have to fix it w ith a sim iliar
code, w e m ust m ake the fix at runtim e (i explained before that because the

IT have to be correct the w in pe loader w ill overw rite the fix w e w ould m ake
to the iat). N ow w e have the A em ulated api. W e see it alw ays return a value,
w e just have to understand w hat this value is! It changes at runim e, so
probably it is a handle? To find w hat it is w e can put a breakpoint on
m em ory access on 0x00B 46CF4 and run the asprotected exe. W e w ill find
this code in the aspr loader:

00B 411E E push 4111FCh
00B 411F3 m ov eax, ds:B 3512Ah
00B 411F9 jm p dw ord ptr [eax]
00B 411FC push 411204h
00B 41201 jm p short loc_B 41222
00B 41222 pop edx
00B 41223 pop ebx
00B 41224 push 41122B h
00B 41229 retn
...
00B 4122B m ov [ebx-0Ah], eax <- bpm lands here
00B 4122E jm p edx
if you see B 3512A at runtim e you w ill find it is the address of
G etCurrentProcessId. So this em ulation snippet calls G etCurrentProcessId,
w e can fix it easily. The last em ulation routine is the B , it is a null call, it just
use a stack param eter and rem oves it (stdcall), so don't just nop the call, you
have to adjust stack.
Ok, all em ulated apis can be resolved just putting their OriginalF irstThunk in
the IT, only the 7 and B em ulation routines m ust be replicated. So w e can
w rite the follow ing code:

 B 8 D 01F6900 M OV EAX ,dum p7_ia.00691FD 0
 A3 64C45E 00 M OV D W OR D PTR D S:[005E C464],EAX
 E 01F6900 M OV EAX ,dum p7_ia.00691FE 0
 90C35E 00 M OV D W OR D PTR D S:[005E C390],EAX
 E 9 7FCD F3FF JM P 005CE D 18

w here 00691FD 0 and 00691FE 0 are the tw o em ulation routines:

00691FD 0 55 PU SH E B P
00691FD 1 8B E C M OV E B P,E SP
00691FD 3 5D POP E B P
00691FD 4 C2 0400 R E TN 4

00691FE 0 55 PU SH E B P
00691FE 1 8B E C M OV E B P,E SP
00691FE 3 8B 45 08 M OV EAX ,D W OR D PTR SS:[E B P+8]

00691FE 6 5D POP E B P
00691FE 7 C2 0400 R E TN 4
Of course you can put this code w here you w ant. W e fix the tw o IAT
em ulated APIs and put there our em ulation code, then w e jum p at original
entry point. R em em ber to change AddressOfE ntryPoint in the PE . Okay, APIs
are fixed, now you run the program and... It w orks! W e have the w orking
exe and w e have com pletely rem oved the ASPR layer. W asn't it funny?

F IN AL CON SID E R ATION SF IN AL CON SID E R ATION SF IN AL CON SID E R ATION SF IN AL CON SID E R ATION S
R eally good crypter. It has a lot of nice tricks, the API em ulation is really a
good idea. N ote that the code that solves the em ulated APIs is deleted from
the m em ory after execution, so you w ill not have it in the dum ped
0x00B 4xxxx m em ory area. M aking an unpacker for this ASPR w ould be a
good challenge, I think it could be done by using debug APIs and
synthesizing the approach I used for this essay (so you don't have to study
description algorithm s). That is, I think that m aking an "offline" unpacker
w ould be really difficult (but not im possible)! H ope you w ill like this essay :)

G R E E TS AN D TH AN K SG R E E TS AN D TH AN K SG R E E TS AN D TH AN K SG R E E TS AN D TH AN K S
Thanks to all R ET bros! Thanks to K athras w ho is helping m e really a lot
w ith the V B decom piler, hope w e w ill release a good version soon!
Thanks to D evine9 w ho alw ays reads and corrects gram m ar of m y w ritings!
G reets to ��all�� U IC m em bers and to all #crack-it people.
A particular greet to G iulia, the craziest binary coder in the w orld!
G oodB ye!

[AndreaG eddon]

 andreageddon@ hotm ail.com m y m ail
 w w w .andreageddon.com m y lam e italian site
[R E T] w w w .reteam .org R E T's great site
[U IC] w w w .quequero.org italian university of cracking

